TY - JOUR
T1 - Prediction of HLA-DQ8 β cell peptidome using a computational program and its relationship to autoreactive T cells
AU - Chang, Kuan Y.
AU - Unanue, Emil R.
PY - 2009
Y1 - 2009
N2 - The goal was to identify HLA-DQ8-bound β cell epitopes important in the T cell response in autoimmune diabetes. We first identified HLA-DQ8 (DQA1*0301/DQB1*0302) β cell epitopes using a computational approach and then related their identification to CD4 T cell responses. The computational program (TEA-DQ8) was adapted from one previously developed for identifying peptides bound to the I-Ag7 molecule and based on a library of naturally processed peptides bound to HLA-DQ8 molecules of antigen-presenting cells. We then examined experimentally the response of NOD.DQ8 mice immunized with peptides derived from the Zinc transporter 8 protein. Log-of-odds scores on peptides were experimentally validated as an indicator of peptide binding to HLA-DQ8 molecules. We also examined previously published data on diabetic autoantigens, including glutamic acid decarboxylase-65, insulin and insulinoma-associated antigen-2, all tested in NOD.DQ8 transgenic mice. In all examples, many peptides identified with a favorable binding motif generated an autoimmune T cell response, but importantly many did not. Moreover, some peptides with weak-binding motifs were immunogenic. These results indicate the benefits and limitations in predicting autoimmune T cell responses strictly from MHC-binding data. TEA-DQ8 performed significantly better than other prediction programs.
AB - The goal was to identify HLA-DQ8-bound β cell epitopes important in the T cell response in autoimmune diabetes. We first identified HLA-DQ8 (DQA1*0301/DQB1*0302) β cell epitopes using a computational approach and then related their identification to CD4 T cell responses. The computational program (TEA-DQ8) was adapted from one previously developed for identifying peptides bound to the I-Ag7 molecule and based on a library of naturally processed peptides bound to HLA-DQ8 molecules of antigen-presenting cells. We then examined experimentally the response of NOD.DQ8 mice immunized with peptides derived from the Zinc transporter 8 protein. Log-of-odds scores on peptides were experimentally validated as an indicator of peptide binding to HLA-DQ8 molecules. We also examined previously published data on diabetic autoantigens, including glutamic acid decarboxylase-65, insulin and insulinoma-associated antigen-2, all tested in NOD.DQ8 transgenic mice. In all examples, many peptides identified with a favorable binding motif generated an autoimmune T cell response, but importantly many did not. Moreover, some peptides with weak-binding motifs were immunogenic. These results indicate the benefits and limitations in predicting autoimmune T cell responses strictly from MHC-binding data. TEA-DQ8 performed significantly better than other prediction programs.
KW - HLA-DQ8
KW - MHC class II molecules
KW - T cell epitope prediction
KW - Type I diabetes mellitus
UR - http://www.scopus.com/inward/record.url?scp=66249085541&partnerID=8YFLogxK
U2 - 10.1093/intimm/dxp039
DO - 10.1093/intimm/dxp039
M3 - Article
C2 - 19461125
AN - SCOPUS:66249085541
SN - 0953-8178
VL - 21
SP - 705
EP - 713
JO - International Immunology
JF - International Immunology
IS - 6
ER -