TY - JOUR
T1 - Predicting radiotherapy outcomes using statistical learning techniques
AU - El Naqa, Issam
AU - Bradley, Jeffrey D.
AU - Lindsay, Patricia E.
AU - Hope, Andrew J.
AU - Deasy, Joseph O.
PY - 2009
Y1 - 2009
N2 - Radiotherapy outcomes are determined by complex interactions between treatment, anatomical and patient-related variables. A common obstacle to building maximally predictive outcome models for clinical practice is the failure to capture potential complexity of heterogeneous variable interactions and applicability beyond institutional data. We describe a statistical learning methodology that can automatically screen for nonlinear relations among prognostic variables and generalize to unseen data before. In this work, several types of linear and nonlinear kernels to generate interaction terms and approximate the treatment-response function are evaluated. Examples of institutional datasets of esophagitis, pneumonitis and xerostomia endpoints were used. Furthermore, an independent RTOG dataset was used for 'generalizabilty' validation. We formulated the discrimination between risk groups as a supervised learning problem. The distribution of patient groups was initially analyzed using principle components analysis (PCA) to uncover potential nonlinear behavior. The performance of the different methods was evaluated using bivariate correlations and actuarial analysis. Over-fitting was controlled via cross-validation resampling. Our results suggest that a modified support vector machine (SVM) kernel method provided superior performance on leave-one-out testing compared to logistic regression and neural networks in cases where the data exhibited nonlinear behavior on PCA. For instance, in prediction of esophagitis and pneumonitis endpoints, which exhibited nonlinear behavior on PCA, the method provided 21% and 60% improvements, respectively. Furthermore, evaluation on the independent pneumonitis RTOG dataset demonstrated good generalizabilty beyond institutional data in contrast with other models. This indicates that the prediction of treatment response can be improved by utilizing nonlinear kernel methods for discovering important nonlinear interactions among model variables. These models have the capacity to predict on unseen data.
AB - Radiotherapy outcomes are determined by complex interactions between treatment, anatomical and patient-related variables. A common obstacle to building maximally predictive outcome models for clinical practice is the failure to capture potential complexity of heterogeneous variable interactions and applicability beyond institutional data. We describe a statistical learning methodology that can automatically screen for nonlinear relations among prognostic variables and generalize to unseen data before. In this work, several types of linear and nonlinear kernels to generate interaction terms and approximate the treatment-response function are evaluated. Examples of institutional datasets of esophagitis, pneumonitis and xerostomia endpoints were used. Furthermore, an independent RTOG dataset was used for 'generalizabilty' validation. We formulated the discrimination between risk groups as a supervised learning problem. The distribution of patient groups was initially analyzed using principle components analysis (PCA) to uncover potential nonlinear behavior. The performance of the different methods was evaluated using bivariate correlations and actuarial analysis. Over-fitting was controlled via cross-validation resampling. Our results suggest that a modified support vector machine (SVM) kernel method provided superior performance on leave-one-out testing compared to logistic regression and neural networks in cases where the data exhibited nonlinear behavior on PCA. For instance, in prediction of esophagitis and pneumonitis endpoints, which exhibited nonlinear behavior on PCA, the method provided 21% and 60% improvements, respectively. Furthermore, evaluation on the independent pneumonitis RTOG dataset demonstrated good generalizabilty beyond institutional data in contrast with other models. This indicates that the prediction of treatment response can be improved by utilizing nonlinear kernel methods for discovering important nonlinear interactions among model variables. These models have the capacity to predict on unseen data.
UR - http://www.scopus.com/inward/record.url?scp=71049175420&partnerID=8YFLogxK
U2 - 10.1088/0031-9155/54/18/S02
DO - 10.1088/0031-9155/54/18/S02
M3 - Article
C2 - 19687564
AN - SCOPUS:71049175420
SN - 0031-9155
VL - 54
SP - S9-S30
JO - Physics in medicine and biology
JF - Physics in medicine and biology
IS - 18
ER -