TY - JOUR
T1 - Predicting pressure injury using nursing assessment phenotypes and machine learning methods
AU - Song, Wenyu
AU - Kang, Min Jeoung
AU - Zhang, Linying
AU - Jung, Wonkyung
AU - Song, Jiyoun
AU - Bates, David W.
AU - Dykes, Patricia C.
N1 - Publisher Copyright:
© 2021 The Author(s).
PY - 2021/4/1
Y1 - 2021/4/1
N2 - Objective: Pressure injuries are common and serious complications for hospitalized patients. The pressure injury rate is an important patient safety metric and an indicator of the quality of nursing care. Timely and accurate prediction of pressure injury risk can significantly facilitate early prevention and treatment and avoid adverse outcomes. While many pressure injury risk assessment tools exist, most were developed before there was access to large clinical datasets and advanced statistical methods, limiting their accuracy. In this paper, we describe the development of machine learning-based predictive models, using phenotypes derived from nurse-entered direct patient assessment data. Methods: We utilized rich electronic health record data, including full assessment records entered by nurses, from 5 different hospitals affiliated with a large integrated healthcare organization to develop machine learning-based prediction models for pressure injury. Five-fold cross-validation was conducted to evaluate model performance. Results: Two pressure injury phenotypes were defined for model development: nonhospital acquired pressure injury (N = 4398) and hospital acquired pressure injury (N = 1767), representing 2 distinct clinical scenarios. A total of 28 clinical features were extracted and multiple machine learning predictive models were developed for both pressure injury phenotypes. The random forest model performed best and achieved an AUC of 0.92 and 0.94 in 2 test sets, respectively. The Glasgow coma scale, a nurse-entered level of consciousness measurement, was the most important feature for both groups. Conclusions: This model accurately predicts pressure injury development and, if validated externally, may be helpful in widespread pressure injury prevention.
AB - Objective: Pressure injuries are common and serious complications for hospitalized patients. The pressure injury rate is an important patient safety metric and an indicator of the quality of nursing care. Timely and accurate prediction of pressure injury risk can significantly facilitate early prevention and treatment and avoid adverse outcomes. While many pressure injury risk assessment tools exist, most were developed before there was access to large clinical datasets and advanced statistical methods, limiting their accuracy. In this paper, we describe the development of machine learning-based predictive models, using phenotypes derived from nurse-entered direct patient assessment data. Methods: We utilized rich electronic health record data, including full assessment records entered by nurses, from 5 different hospitals affiliated with a large integrated healthcare organization to develop machine learning-based prediction models for pressure injury. Five-fold cross-validation was conducted to evaluate model performance. Results: Two pressure injury phenotypes were defined for model development: nonhospital acquired pressure injury (N = 4398) and hospital acquired pressure injury (N = 1767), representing 2 distinct clinical scenarios. A total of 28 clinical features were extracted and multiple machine learning predictive models were developed for both pressure injury phenotypes. The random forest model performed best and achieved an AUC of 0.92 and 0.94 in 2 test sets, respectively. The Glasgow coma scale, a nurse-entered level of consciousness measurement, was the most important feature for both groups. Conclusions: This model accurately predicts pressure injury development and, if validated externally, may be helpful in widespread pressure injury prevention.
KW - artificial intelligence
KW - clinical phenotype
KW - electronic health record
KW - patient safety
KW - quality of care
UR - http://www.scopus.com/inward/record.url?scp=85103228559&partnerID=8YFLogxK
U2 - 10.1093/jamia/ocaa336
DO - 10.1093/jamia/ocaa336
M3 - Article
C2 - 33517452
AN - SCOPUS:85103228559
SN - 1067-5027
VL - 28
SP - 759
EP - 765
JO - Journal of the American Medical Informatics Association
JF - Journal of the American Medical Informatics Association
IS - 4
ER -