Abstract

Thanks to the availability of multiomics data of individual cancer patients, precision medicine or personalized medicine is becoming a promising treatment for individual cancer patients. However, the association patterns, that is, the mechanism of response (MoR) between large-scale multiomics features and drug response are complex and heterogeneous and remain unclear. Although there are existing computational models for predicting drug response using the high-dimensional multiomics features, it remains challenging to uncover the complex molecular mechanism of drug responses. To reduce the number of predictors/features and make the model more interpretable, in this study, 46 signaling pathways were used to build a deep learning model constrained by signaling pathways, consDeepSignaling, for anti–drug response prediction. Multiomics data, like gene expression and copy number variation, of individual genes can be integrated naturally in this model. The signaling pathway–constrained deep learning model was evaluated using the multiomics data of ∼1000 cancer cell lines in the Broad Institute Cancer Cell Line Encyclopedia (CCLE) database and the corresponding drug–cancer cell line response data set in the Genomics of Drug Sensitivity in Cancer (GDSC) database. The evaluation results showed that the proposed model outperformed the existing deep neural network models. Also, the model interpretation analysis indicated the distinctive patterns of importance of signaling pathways in anticancer drug response prediction.

Original languageEnglish
Article number639349
JournalFrontiers in Bioinformatics
Volume1
DOIs
StatePublished - 2021

Keywords

  • artificial intelligence
  • cancer
  • deep learning
  • drug response prediction
  • mechanism of response
  • precision medicine
  • signaling pathways

Fingerprint

Dive into the research topics of 'Predicting Anticancer Drug Response With Deep Learning Constrained by Signaling Pathways'. Together they form a unique fingerprint.

Cite this