TY - JOUR
T1 - Preclinical evaluation of 18F-RO6958948, 11C-RO6931643, and 11C-RO6924963 as novel PET radiotracers for imaging tau aggregates in Alzheimer disease
AU - Honer, Michael
AU - Gobbi, Luca
AU - Knust, Henner
AU - Kuwabara, Hiroto
AU - Muri, Dieter
AU - Koerner, Matthias
AU - Valentine, Heather
AU - Dannals, Robert F.
AU - Wong, Dean F.
AU - Borroni, Edilio
N1 - Funding Information:
This study was funded by a F. Hoffmann-La Roche Ltd. contract to the Johns Hopkins University (JHU). JHU faculty receive salary support through a number of sponsored research sources, including NIH grants S10-RR017219 and S10-RR023623 (both to Dean Wong). JHU faculty do not receive direct funding from Roche except via sponsored JHU contracts. No other potential conflict of interest relevant to this article was reported.
Publisher Copyright:
� Copyright 2018 SNMMI; all rights reserved.
PY - 2018/4/1
Y1 - 2018/4/1
N2 - Tau aggregates and amyloid-b (Ab) plaques are key histopathologic features in Alzheimer disease (AD) and are considered targets for therapeutic intervention as well as biomarkers for diagnostic in vivo imaging agents. This article describes the preclinical in vitro and in vivo characterization of 3 novel compounds—RO6958948, RO6931643, and RO6924963—that bind specifically to tau aggregates and have the potential to become PET tracers for future human use. Methods: RO6958948, RO6931643, and RO6924963 were identified as high-affinity competitors at the 3H-T808 binding site on native tau aggregates in human late-stage AD brain tissue. Binding of tritiated compounds to brain tissue sections of AD patients and healthy controls was analyzed by macro- and microautoradiography and by costaining of tau aggregates and Ab plaques on the same tissue section using specific antibodies. All 3 tracer candidates were radiolabeled with a PET nuclide and tested in vivo in tau-naïve baboons to assess brain uptake, distribution, clearance, and metabolism. Results: 3H-RO6958948, 3H-RO6931643, and 3H-RO6924963 bound with high affinity and specificity to tau aggregates, clearly lacking affinity for concomitant Ab plaques in human AD Braak V tissue sections. The specificity of all 3 radioligands for tau aggregates was supported, first, by binding patterns in AD sections comparable to the tau-specific radioligand 3H-T808; second, by very low nonspecific binding in brain tissue devoid of tau pathology, excluding significant radioligand binding to any other central nervous system target; and third, by macroscopic and microscopic colocalization and quantitative correlation of radioligand binding and tau antibody staining on the same tissue section. RO6958948, RO6931643, and RO6924963 were successfully radiolabeled with a PET nuclide at high specific activity, radiochemical purity, and yield. After intravenous administration of 18F-RO6958948, 11C-RO6931643, and 11C-RO6924963 to baboons, PET scans indicated good brain entry, rapid washout, and a favorable metabolism pattern. Conclusion: 18F-RO6958948, 11C-RO6931643, and 11C-RO6924963 are promising PET tracers for visualization of tau aggregates in AD. Head-to-head comparison and validation of these tracer candidates in AD patients and healthy controls will be reported in due course.
AB - Tau aggregates and amyloid-b (Ab) plaques are key histopathologic features in Alzheimer disease (AD) and are considered targets for therapeutic intervention as well as biomarkers for diagnostic in vivo imaging agents. This article describes the preclinical in vitro and in vivo characterization of 3 novel compounds—RO6958948, RO6931643, and RO6924963—that bind specifically to tau aggregates and have the potential to become PET tracers for future human use. Methods: RO6958948, RO6931643, and RO6924963 were identified as high-affinity competitors at the 3H-T808 binding site on native tau aggregates in human late-stage AD brain tissue. Binding of tritiated compounds to brain tissue sections of AD patients and healthy controls was analyzed by macro- and microautoradiography and by costaining of tau aggregates and Ab plaques on the same tissue section using specific antibodies. All 3 tracer candidates were radiolabeled with a PET nuclide and tested in vivo in tau-naïve baboons to assess brain uptake, distribution, clearance, and metabolism. Results: 3H-RO6958948, 3H-RO6931643, and 3H-RO6924963 bound with high affinity and specificity to tau aggregates, clearly lacking affinity for concomitant Ab plaques in human AD Braak V tissue sections. The specificity of all 3 radioligands for tau aggregates was supported, first, by binding patterns in AD sections comparable to the tau-specific radioligand 3H-T808; second, by very low nonspecific binding in brain tissue devoid of tau pathology, excluding significant radioligand binding to any other central nervous system target; and third, by macroscopic and microscopic colocalization and quantitative correlation of radioligand binding and tau antibody staining on the same tissue section. RO6958948, RO6931643, and RO6924963 were successfully radiolabeled with a PET nuclide at high specific activity, radiochemical purity, and yield. After intravenous administration of 18F-RO6958948, 11C-RO6931643, and 11C-RO6924963 to baboons, PET scans indicated good brain entry, rapid washout, and a favorable metabolism pattern. Conclusion: 18F-RO6958948, 11C-RO6931643, and 11C-RO6924963 are promising PET tracers for visualization of tau aggregates in AD. Head-to-head comparison and validation of these tracer candidates in AD patients and healthy controls will be reported in due course.
KW - Alzheimer disease
KW - Autoradiography
KW - Neurology
KW - PET
KW - Tau
KW - Tauopathy
UR - http://www.scopus.com/inward/record.url?scp=85044756502&partnerID=8YFLogxK
U2 - 10.2967/jnumed.117.196741
DO - 10.2967/jnumed.117.196741
M3 - Article
C2 - 28970331
AN - SCOPUS:85044756502
SN - 0161-5505
VL - 59
SP - 675
EP - 681
JO - Journal of Nuclear Medicine
JF - Journal of Nuclear Medicine
IS - 4
ER -