Abstract
Purpose: Alanine-serine-cysteine transporter 2 (ASCT2) expression has been demonstrated as a promising lung cancer biomarker. (2S,4R)-4-[18F]Fluoroglutamine (4-[18F]fluoro-Gln) positron emission tomography (PET) was evaluated in preclinical models of non-small cell lung cancer as a quantitative, non-invasive measure of ASCT2 expression. Procedures: In vivo microPET studies of 4-[18F]fluoro-Gln uptake were undertaken in human cell line xenograft tumor-bearing mice of varying ASCT2 levels, followed by a genetically engineered mouse model of epidermal growth factor receptor (EGFR)-mutant lung cancer. The relationship between a tracer accumulation and ASCT2 levels in tumors was evaluated by IHC and immunoblotting. Result: 4-[18F]Fluoro-Gln uptake, but not 2-deoxy-2-[18F]fluoro-D-glucose, correlated with relative ASCT2 levels in xenograft tumors. In genetically engineered mice, 4-[18F]fluoro-Gln accumulation was significantly elevated in lung tumors, relative to normal lung and cardiac tissues. Conclusions: 4-[18F]Fluoro-Gln PET appears to provide a non-invasive measure of ASCT2 expression. Given the potential of ASCT2 as a lung cancer biomarker, this and other tracers reflecting ASCT2 levels could emerge as precision imaging diagnostics in this setting.
Original language | English |
---|---|
Pages (from-to) | 18-23 |
Number of pages | 6 |
Journal | Molecular Imaging and Biology |
Volume | 18 |
Issue number | 1 |
DOIs | |
State | Published - Feb 1 2016 |
Keywords
- ASCT2
- Cancer
- Glutamine
- Lung
- NSCLC
- PET
- SCC
- SLC1A5
- Transporter