Abstract
Meta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples.
Original language | English |
---|---|
Journal | Nature Genetics |
DOIs | |
State | Accepted/In press - 2022 |
Fingerprint
Dive into the research topics of 'Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Nature Genetics, 2022.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies
AU - NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, TOPMed Lipids Working Group
AU - Li, Xihao
AU - Quick, Corbin
AU - Zhou, Hufeng
AU - Gaynor, Sheila M.
AU - Liu, Yaowu
AU - Chen, Han
AU - Selvaraj, Margaret Sunitha
AU - Sun, Ryan
AU - Dey, Rounak
AU - Arnett, Donna K.
AU - Bielak, Lawrence F.
AU - Bis, Joshua C.
AU - Blangero, John
AU - Boerwinkle, Eric
AU - Bowden, Donald W.
AU - Brody, Jennifer A.
AU - Cade, Brian E.
AU - Correa, Adolfo
AU - Cupples, L. Adrienne
AU - Curran, Joanne E.
AU - de Vries, Paul S.
AU - Duggirala, Ravindranath
AU - Freedman, Barry I.
AU - Göring, Harald H.H.
AU - Guo, Xiuqing
AU - Haessler, Jeffrey
AU - Kalyani, Rita R.
AU - Kooperberg, Charles
AU - Kral, Brian G.
AU - Lange, Leslie A.
AU - Manichaikul, Ani
AU - Martin, Lisa W.
AU - McGarvey, Stephen T.
AU - Mitchell, Braxton D.
AU - Montasser, May E.
AU - Morrison, Alanna C.
AU - Naseri, Take
AU - O’Connell, Jeffrey R.
AU - Palmer, Nicholette D.
AU - Peyser, Patricia A.
AU - Psaty, Bruce M.
AU - Raffield, Laura M.
AU - Redline, Susan
AU - Reiner, Alexander P.
AU - Reupena, Muagututi’a Sefuiva
AU - Rice, Kenneth M.
AU - Rich, Stephen S.
AU - Sitlani, Colleen M.
AU - Smith, Jennifer A.
AU - Taylor, Kent D.
AU - Vasan, Ramachandran S.
AU - Willer, Cristen J.
AU - Wilson, James G.
AU - Yanek, Lisa R.
AU - Zhao, Wei
AU - Abe, Namiko
AU - Abecasis, Gonçalo
AU - Aguet, Francois
AU - Albert, Christine
AU - Almasy, Laura
AU - Alonso, Alvaro
AU - Ament, Seth
AU - Anderson, Peter
AU - Anugu, Pramod
AU - Applebaum-Bowden, Deborah
AU - Ardlie, Kristin
AU - Dan Arking, Arking
AU - Ashley-Koch, Allison
AU - Aslibekyan, Stella
AU - Assimes, Tim
AU - Auer, Paul
AU - Avramopoulos, Dimitrios
AU - Ayas, Najib
AU - Balasubramanian, Adithya
AU - Barnard, John
AU - Barnes, Kathleen
AU - Barr, R. Graham
AU - Barron-Casella, Emily
AU - Barwick, Lucas
AU - Beaty, Terri
AU - Beck, Gerald
AU - Becker, Diane
AU - Becker, Lewis
AU - Beer, Rebecca
AU - Beitelshees, Amber
AU - Benjamin, Emelia
AU - Benos, Takis
AU - Bezerra, Marcos
AU - Blackwell, Thomas
AU - Blue, Nathan
AU - Bowler, Russell
AU - Broeckel, Ulrich
AU - Broome, Jai
AU - Brown, Deborah
AU - Bunting, Karen
AU - Burchard, Esteban
AU - Bustamante, Carlos
AU - Buth, Erin
AU - Cardwell, Jonathan
AU - Carey, Vincent
AU - Carrier, Julie
AU - Carson, April
AU - Carty, Cara
AU - Casaburi, Richard
AU - Casas Romero, Juan P.
AU - Casella, James
AU - Castaldi, Peter
AU - Chaffin, Mark
AU - Chang, Christy
AU - Chang, Yi Cheng
AU - Chasman, Daniel
AU - Chavan, Sameer
AU - Chen, Bo Juen
AU - Chen, Wei Min
AU - Chen, Yii Der Ida
AU - Cho, Michael
AU - Choi, Seung Hoan
AU - Chuang, Lee Ming
AU - Chung, Mina
AU - Chung, Ren Hua
AU - Clish, Clary
AU - Comhair, Suzy
AU - Conomos, Matthew
AU - Cornell, Elaine
AU - Crandall, Carolyn
AU - Crapo, James
AU - Curtis, Jeffrey
AU - Custer, Brian
AU - Damcott, Coleen
AU - Darbar, Dawood
AU - David, Sean
AU - Davis, Colleen
AU - Daya, Michelle
AU - de Andrade, Mariza
AU - de las Fuentes, Lisa
AU - DeBaun, Michael
AU - Deka, Ranjan
AU - DeMeo, Dawn
AU - Devine, Scott
AU - Dinh, Huyen
AU - Doddapaneni, Harsha
AU - Duan, Qing
AU - Dugan-Perez, Shannon
AU - Durda, Jon Peter
AU - Dutcher, Susan K.
AU - Eaton, Charles
AU - Ekunwe, Lynette
AU - El Boueiz, Adel
AU - Ellinor, Patrick
AU - Emery, Leslie
AU - Erzurum, Serpil
AU - Farber, Charles
AU - Farek, Jesse
AU - Fingerlin, Tasha
AU - Flickinger, Matthew
AU - Fornage, Myriam
AU - Franceschini, Nora
AU - Frazar, Chris
AU - Fu, Mao
AU - Fullerton, Stephanie M.
AU - Fulton, Lucinda
AU - Gabriel, Stacey
AU - Gan, Weiniu
AU - Gao, Shanshan
AU - Gao, Yan
AU - Gass, Margery
AU - Geiger, Heather
AU - Gelb, Bruce
AU - Geraci, Mark
AU - Germer, Soren
AU - Gerszten, Robert
AU - Ghosh, Auyon
AU - Gibbs, Richard
AU - Gignoux, Chris
AU - Gladwin, Mark
AU - Glahn, David
AU - Gogarten, Stephanie
AU - Gong, Da Wei
AU - Graw, Sharon
AU - Gray, Kathryn J.
AU - Grine, Daniel
AU - Gross, Colin
AU - Gu, C. Charles
AU - Guan, Yue
AU - Gupta, Namrata
AU - Hall, Michael
AU - Han, Yi
AU - Hanly, Patrick
AU - Harris, Daniel
AU - Hawley, Nicola L.
AU - He, Jiang
AU - Ben Heavner, Heavner
AU - Heckbert, Susan
AU - Hernandez, Ryan
AU - Herrington, David
AU - Hersh, Craig
AU - Hidalgo, Bertha
AU - Hixson, James
AU - Rao, D. C.
AU - Sung, Yun Ju
N1 - Funding Information: S.M.G. is now an employee of Regeneron Genetics Center. For B.D.M., The Amish Research Program receives partial support from Regeneron Pharmaceuticals. M.E.M. reports grant from Regeneron Pharmaceutical unrelated to the present work. B.M.P. serves on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. L.M.R. is a consultant for the TOPMed Administrative Coordinating Center (through Westat). For S.R., Jazz Pharma, Eli Lilly, Apnimed, unrelated to the present work. The spouse of C.J.W. works at Regeneron Pharmaceuticals. P.N. reports investigator-initiated grants from Amgen, Apple, AstraZeneca, Boston Scientific and Novartis, personal fees from Apple, AstraZeneca, Blackstone Life Sciences, Foresite Labs, Novartis, Roche/Genentech, is a cofounder of TenSixteen Bio, is a shareholder of geneXwell and TenSixteen Bio, and spousal employment at Vertex, all unrelated to the present work. X. Lin is a consultant of AbbVie Pharmaceuticals and Verily Life Sciences. The remaining authors declare no competing interests. Funding Information: This work was supported by grants R35-CA197449, U19-CA203654, R01-HL113338, U01-HG012064 and U01-HG009088 (X. Lin), NHLBI BioData Catalyst Fellowship (Z.L.), R01-HL142711 and R01-HL127564 (P.N. and G.M.P.), 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1-TR001881, DK063491, R01-HL071051, R01-HL071205, R01-HL071250, R01-HL071251, R01-HL071258, R01-HL071259 and UL1-RR033176 (J.I.R. and X.G.), R35-HL135824 (C.J.W.), U01-HL72518, HL087698, HL49762, HL59684, HL58625, HL071025, HL112064, NR0224103 and M01-RR000052 (to the Johns Hopkins General Clinical Research Center), NO1-HC-25195, HHSN268201500001I, 75N92019D00031 and R01-HL092577-06S1 (R.S.V. and L.A.C.), the Evans Medical Foundation and the Jay and Louis Coffman Endowment from the Department of Medicine, Boston University School of Medicine (R.S.V.), HHSN268201800001I and U01-HL137162 (K.M.R.), R01-HL093093 and R01-HL133040 (S.T.M.), R35-HL135818, R01-HL113338 and HL436801 (S.R.), KL2TR002490 (L.M.R.), R01-HL92301, R01-HL67348, R01-NS058700, R01-AR48797 and R01-AG058921 (N.D.P. and D.W.B.), R01-DK071891 (N.D.P., B.I.F. and D.W.B.), M01-RR07122 and F32-HL085989 (to the General Clinical Research Center of the Wake Forest University School of Medicine), the American Diabetes Association, P60-AG10484 (to the Claude Pepper Older Americans Independence Center of Wake Forest University Health Sciences), U01-HL137181 (J.R.O.), HHSN268201600018C, HHSN268201600001C, HHSN268201600002C, HHSN268201600003C and HHSN268201600004C (C.K.), R01-HL113323, U01-DK085524, R01-HL045522, R01-MH078143, R01-MH078111 and R01-MH083824 (H.H.H.G., R.D., J.E.C. and J.B.), 18CDA34110116 from American Heart Association (P.S.d.V.), HHSN268201800010I, HHSN268201800011I, HHSN268201800012I, HHSN268201800013I, HHSN268201800014I and HHSN268201800015I (A.C.), R01-HL153805, R03-HL154284 (B.E.C.), HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700005I and HHSN268201700004I (E.B.), U01-HL072524, R01-HL104135-04S1, U01-HL054472, U01-HL054473, U01-HL054495, U01-HL054509 and R01-HL055673-18S1 (D.K.A.). Molecular data for the Trans Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung and Blood Institute (NHLBI). Core support including centralized genomic read mapping and genotype calling, along with variant quality metrics and filtering were provided by the TOPMed Informatics Research Center (3R01HL-117626-02S1; contract HHSN268201800002I). Core support including phenotype harmonization, data management, sample-identity QC and general program coordination was provided by the TOPMed Data Coordinating Center (R01HL-120393; U01HL-120393; contract HHSN268201800001I). We gratefully acknowledge the studies and participants who provided biological samples and data for TOPMed and UK Biobank. The full study-specific acknowledgements and NHLBI BioData Catalyst acknowledgement are detailed in the Supplementary Note. Publisher Copyright: © 2022, The Author(s), under exclusive licence to Springer Nature America, Inc.
PY - 2022
Y1 - 2022
N2 - Meta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples.
AB - Meta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples.
UR - http://www.scopus.com/inward/record.url?scp=85144673676&partnerID=8YFLogxK
U2 - 10.1038/s41588-022-01225-6
DO - 10.1038/s41588-022-01225-6
M3 - Article
C2 - 36564505
AN - SCOPUS:85144673676
SN - 1061-4036
JO - Nature Genetics
JF - Nature Genetics
ER -