TY - JOUR
T1 - Potentiation of high voltage-activated calcium channels by 4-Aminopyridine depends on subunit composition
AU - Li, Li
AU - Li, De Pei
AU - Chen, Shao Rui
AU - Chen, Jinjun
AU - Hu, Hongzhen
AU - Pan, Hui Lin
N1 - Funding Information:
This work was supported by grants from the National Institutes of Health [R01-HL077400 and R01-NS073935] and by the N.G. and Helen T. Hawkins endowment (to H.-L.P.). dx.doi.org/10.1124/mol.114.095505.
Publisher Copyright:
Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
PY - 2014
Y1 - 2014
N2 - 4-Aminopyridine (4-AP, fampridine) is used clinically to improve neuromuscular function in patients with multiple sclerosis, spinal cord injury, and myasthenia gravis. 4-AP can increase neuromuscular and synaptic transmission by directly stimulating high voltage-activated (HVA) Ca2+ channels independent of its blocking effect on voltage-activated K+ channels. Here we provide new evidence that the potentiating effect of 4-AP on HVA Ca2+ channels depends on the specific combination of voltage-activated calcium channel α1 (Cavα1) and voltage-activated calcium channel β (Cavβ) subunits. Among the four Cavβ subunits examined, Cavβ3 was the most significant subunit involved in the 4-AP-induced potentiation of both L-type and N-type currents. Of particular note, 4-AP at micromolar concentrations selectively potentiated L-type currents reconstituted with Cav1.2, α2δ1, and Cavβ3. In contrast, 4-AP potentiated N-type currents only at much higher concentrations and had little effect on P/Q-type currents. In a phrenic nerve-diaphragm preparation, blocking L-type Ca2+ channels eliminated the potentiating effect of low concentrations of 4-AP on end-plate potentials. Furthermore, 4-AP enhanced the physical interaction of Cav1.2 and Cav2.2 subunits to Cavβ3 and also increased their trafficking to the plasma membrane. Site-directed mutagenesis identified specific regions in the guanylate kinase, HOOK, and C-terminus domains of the Cavβ3 subunit crucial to the ability of 4-AP to potentiate L-type and N-type currents. Our findings indicate that 4-AP potentiates HVA Ca2+ channels by enhancing reciprocal Cav1.2-Cavβ3 and Cav2.2-Cavβ3 interactions. The therapeutic effect of 4-AP on neuromuscular function is probably mediated by its actions on Cavβ3-containing L-type Ca2+ channels.
AB - 4-Aminopyridine (4-AP, fampridine) is used clinically to improve neuromuscular function in patients with multiple sclerosis, spinal cord injury, and myasthenia gravis. 4-AP can increase neuromuscular and synaptic transmission by directly stimulating high voltage-activated (HVA) Ca2+ channels independent of its blocking effect on voltage-activated K+ channels. Here we provide new evidence that the potentiating effect of 4-AP on HVA Ca2+ channels depends on the specific combination of voltage-activated calcium channel α1 (Cavα1) and voltage-activated calcium channel β (Cavβ) subunits. Among the four Cavβ subunits examined, Cavβ3 was the most significant subunit involved in the 4-AP-induced potentiation of both L-type and N-type currents. Of particular note, 4-AP at micromolar concentrations selectively potentiated L-type currents reconstituted with Cav1.2, α2δ1, and Cavβ3. In contrast, 4-AP potentiated N-type currents only at much higher concentrations and had little effect on P/Q-type currents. In a phrenic nerve-diaphragm preparation, blocking L-type Ca2+ channels eliminated the potentiating effect of low concentrations of 4-AP on end-plate potentials. Furthermore, 4-AP enhanced the physical interaction of Cav1.2 and Cav2.2 subunits to Cavβ3 and also increased their trafficking to the plasma membrane. Site-directed mutagenesis identified specific regions in the guanylate kinase, HOOK, and C-terminus domains of the Cavβ3 subunit crucial to the ability of 4-AP to potentiate L-type and N-type currents. Our findings indicate that 4-AP potentiates HVA Ca2+ channels by enhancing reciprocal Cav1.2-Cavβ3 and Cav2.2-Cavβ3 interactions. The therapeutic effect of 4-AP on neuromuscular function is probably mediated by its actions on Cavβ3-containing L-type Ca2+ channels.
UR - http://www.scopus.com/inward/record.url?scp=84964698473&partnerID=8YFLogxK
U2 - 10.1124/mol.114.095505
DO - 10.1124/mol.114.095505
M3 - Article
C2 - 25267719
AN - SCOPUS:84964698473
SN - 0026-895X
VL - 86
SP - 760
EP - 772
JO - Molecular Pharmacology
JF - Molecular Pharmacology
IS - 6
ER -