TY - JOUR
T1 - Postprandial remodeling of the gut microbiota in Burmese pythons
AU - Costello, Elizabeth K.
AU - Gordon, Jeffrey I.
AU - Secor, Stephen M.
AU - Knight, Rob
N1 - Funding Information:
We thank Donna Berg-Lyons, Scott Boback, Christian Cox, Jill Manchester, Brian Ott and Sabrina Wagoner for superb technical assistance, and Greg Caporaso and Daniel McDonald for valuable feedback. This work was supported by grants from the Crohn’s and Colitis Foundation, the Colorado Center for Biofuels and Biorefining, the National Science Foundation (IOS 0466139 to SMS), the NIH (DK70977, DK30292, HG004872) and by the HHMI.
PY - 2010/11
Y1 - 2010/11
N2 - The vertebrate gut microbiota evolved in an environment typified by periodic fluctuations in nutrient availability, yet little is known about its responses to host feeding and fasting. As many model species (for example, mice) are adapted to lifestyles of frequent small meals, we turned to the Burmese python, a sit-and-wait foraging snake that consumes large prey at long intervals (1 month), to examine the effects of a dynamic nutrient milieu on the gut microbiota. We used multiplexed 16S rRNA gene pyrosequencing to characterize bacterial communities harvested from the intestines of fasted and digesting snakes, and from their rodent meal. In this unprecedented survey of a reptilian host, we found that Bacteroidetes and Firmicutes numerically dominated the python gut. In the large intestine, fasting was associated with increased abundances of the genera Bacteroides, Rikenella, Synergistes and Akkermansia, and with reduced overall diversity. A marked postprandial shift in bacterial community configuration occurred. Between 12 h and 3 days after feeding, Firmicutes, including the taxa Clostridium, Lactobacillus and Peptostreptococcaceae, gradually outnumbered the fasting-dominant Bacteroidetes, and overall species-level diversity increased significantly. Most lineages seemed to be indigenous to the python rather than ingested with the meal, but a dietary source of Lactobacillus could not be ruled out. Thus, the observed large-scale alterations of the gut microbiota that accompany the Burmese python's own dramatic physiological and morphological changes during feeding and fasting emphasize the need to consider both microbial and host cellular responses to nutrient flux. The Burmese python may provide a unique model for dissecting these interrelationships.
AB - The vertebrate gut microbiota evolved in an environment typified by periodic fluctuations in nutrient availability, yet little is known about its responses to host feeding and fasting. As many model species (for example, mice) are adapted to lifestyles of frequent small meals, we turned to the Burmese python, a sit-and-wait foraging snake that consumes large prey at long intervals (1 month), to examine the effects of a dynamic nutrient milieu on the gut microbiota. We used multiplexed 16S rRNA gene pyrosequencing to characterize bacterial communities harvested from the intestines of fasted and digesting snakes, and from their rodent meal. In this unprecedented survey of a reptilian host, we found that Bacteroidetes and Firmicutes numerically dominated the python gut. In the large intestine, fasting was associated with increased abundances of the genera Bacteroides, Rikenella, Synergistes and Akkermansia, and with reduced overall diversity. A marked postprandial shift in bacterial community configuration occurred. Between 12 h and 3 days after feeding, Firmicutes, including the taxa Clostridium, Lactobacillus and Peptostreptococcaceae, gradually outnumbered the fasting-dominant Bacteroidetes, and overall species-level diversity increased significantly. Most lineages seemed to be indigenous to the python rather than ingested with the meal, but a dietary source of Lactobacillus could not be ruled out. Thus, the observed large-scale alterations of the gut microbiota that accompany the Burmese python's own dramatic physiological and morphological changes during feeding and fasting emphasize the need to consider both microbial and host cellular responses to nutrient flux. The Burmese python may provide a unique model for dissecting these interrelationships.
KW - digestion
KW - fasting
KW - gastrointestinal bacteria
KW - host microbe interactions
KW - nutrient deprivation
KW - reptile
UR - http://www.scopus.com/inward/record.url?scp=77958490531&partnerID=8YFLogxK
U2 - 10.1038/ismej.2010.71
DO - 10.1038/ismej.2010.71
M3 - Article
C2 - 20520652
AN - SCOPUS:77958490531
SN - 1751-7362
VL - 4
SP - 1375
EP - 1385
JO - ISME Journal
JF - ISME Journal
IS - 11
ER -