TY - JOUR
T1 - Positron-Emitting Myocardial Blood Flow Tracers and Clinical Potential
AU - Schindler, Thomas H.
N1 - Publisher Copyright:
© 2015 Elsevier Inc.
PY - 2015/5/1
Y1 - 2015/5/1
N2 - Positron-emitting myocardial flow radiotracers such as 15O-water, 13N-ammonia and 82Rubidium in conjunction with positron-emission-tomography (PET) are increasingly applied in clinical routine for coronary artery disease (CAD) detection, yielding high diagnostic accuracy, while providing valuable information on cardiovascular (CV) outcome. Owing to a cyclotron dependency of 15O-water and 13N-ammonia, their clinical use for PET myocardial perfusion imaging is limited to a few centers. This limitation could be overcome by the increasing use of 82Rubidium as it can be eluted from a commercially available 82Strontium generator and, thus, is independent of a nearby cyclotron. Another novel F-18-labeled myocardial flow radiotracer is flurpiridaz which has attracted increasing interest due to its excellent radiotracer characteristics for perfusion and flow imaging with PET. In particular, the relatively long half-life of 109minutes of flurpiridaz may afford a general application of this radiotracer for PET perfusion imaging comparable to technetium-99m-labeled single-photon emission computed tomography (SPECT). The ability of PET in conjunction with several radiotracers to assess myocardial blood flow (MBF) in ml/g/min at rest and during vasomotor stress has contributed to unravel pathophysiological mechanisms underlying coronary artery disease (CAD), to improve the detection and characterization of CAD burden in multivessel disease, and to provide incremental prognostic information in individuals with subclinical and clinically-manifest CAD. The concurrent evaluation of myocardial perfusion and MBF may lead to a new era of a personalized, image-guided therapy approach that may offer potential to further improve clinical outcome in CV disease patients but needing validation in large-scale clinical trials.
AB - Positron-emitting myocardial flow radiotracers such as 15O-water, 13N-ammonia and 82Rubidium in conjunction with positron-emission-tomography (PET) are increasingly applied in clinical routine for coronary artery disease (CAD) detection, yielding high diagnostic accuracy, while providing valuable information on cardiovascular (CV) outcome. Owing to a cyclotron dependency of 15O-water and 13N-ammonia, their clinical use for PET myocardial perfusion imaging is limited to a few centers. This limitation could be overcome by the increasing use of 82Rubidium as it can be eluted from a commercially available 82Strontium generator and, thus, is independent of a nearby cyclotron. Another novel F-18-labeled myocardial flow radiotracer is flurpiridaz which has attracted increasing interest due to its excellent radiotracer characteristics for perfusion and flow imaging with PET. In particular, the relatively long half-life of 109minutes of flurpiridaz may afford a general application of this radiotracer for PET perfusion imaging comparable to technetium-99m-labeled single-photon emission computed tomography (SPECT). The ability of PET in conjunction with several radiotracers to assess myocardial blood flow (MBF) in ml/g/min at rest and during vasomotor stress has contributed to unravel pathophysiological mechanisms underlying coronary artery disease (CAD), to improve the detection and characterization of CAD burden in multivessel disease, and to provide incremental prognostic information in individuals with subclinical and clinically-manifest CAD. The concurrent evaluation of myocardial perfusion and MBF may lead to a new era of a personalized, image-guided therapy approach that may offer potential to further improve clinical outcome in CV disease patients but needing validation in large-scale clinical trials.
KW - Coronary artery disease
KW - Coronary circulation
KW - Ischemia
KW - Myocardial blood flow
KW - Myocardial perfusion
KW - PET
KW - Positron-emitting radiotracers
UR - http://www.scopus.com/inward/record.url?scp=84930042174&partnerID=8YFLogxK
U2 - 10.1016/j.pcad.2015.01.001
DO - 10.1016/j.pcad.2015.01.001
M3 - Article
C2 - 25637500
AN - SCOPUS:84930042174
SN - 0033-0620
VL - 57
SP - 588
EP - 606
JO - Progress in cardiovascular diseases
JF - Progress in cardiovascular diseases
IS - 6
ER -