TY - JOUR
T1 - Porous polymersomes with encapsulated Gd-labeled dendrimers as highly efficient MRI contrast agents
AU - Cheng, Zhiliang
AU - Thorek, Daniel L.J.
AU - Tsourkas, Andrew
PY - 2009/9/12
Y1 - 2009/9/12
N2 - The use of nanovesicles with encapsulated Gd as magnetic resonance (MR) contrast agents has largely been ignored due to the detrimental effects of the slow water exchange rate through the vesicle bilayer on the relaxivity of encapsulated Gd. Here, the facile synthesis of a composite MR contrast platform is described; it consists of dendrimer conjugates encapsulated in porous polymersomes. These nanoparticles exhibit improved permeability to water flux and a large capacity to store chelated Gd within the aqueous lumen, resulting in enhanced longitudinal relaxivity. The porous polymersomes, ∼130nm in diameter, are produced through the aqueous assembly of the polymers, polyethylene oxide-b-polybutadiene (PBdEO), and polyethylene oxide-b-polycaprolactone (PEOCL), Subsequent hydrolysis of the caprolactone (CL) block resulted in a highly permeable outer membrane. To prevent the leakage of small Gd-chelate through the pores, Gd was conjugated to polyamidoamine (PAMAM, dendrimers via diethylenetriaminepentaacetic acid dianhydride (DTPA dianhydride) prior to encapsulation. As a result of the slower rotational correlation time of Gd-labeled dendrimers, the porous outer membrane of the nanovesicle, and the high Gd paybad, these functional nanoparticles are found to exhibit a relaxivity (R1) of 292 109 mM-1 s-1 per particle. The polymersomes are also found to exhibit unique pharmacokinetics with a circulation half-life of >3.5 h and predominantly renal clearance.
AB - The use of nanovesicles with encapsulated Gd as magnetic resonance (MR) contrast agents has largely been ignored due to the detrimental effects of the slow water exchange rate through the vesicle bilayer on the relaxivity of encapsulated Gd. Here, the facile synthesis of a composite MR contrast platform is described; it consists of dendrimer conjugates encapsulated in porous polymersomes. These nanoparticles exhibit improved permeability to water flux and a large capacity to store chelated Gd within the aqueous lumen, resulting in enhanced longitudinal relaxivity. The porous polymersomes, ∼130nm in diameter, are produced through the aqueous assembly of the polymers, polyethylene oxide-b-polybutadiene (PBdEO), and polyethylene oxide-b-polycaprolactone (PEOCL), Subsequent hydrolysis of the caprolactone (CL) block resulted in a highly permeable outer membrane. To prevent the leakage of small Gd-chelate through the pores, Gd was conjugated to polyamidoamine (PAMAM, dendrimers via diethylenetriaminepentaacetic acid dianhydride (DTPA dianhydride) prior to encapsulation. As a result of the slower rotational correlation time of Gd-labeled dendrimers, the porous outer membrane of the nanovesicle, and the high Gd paybad, these functional nanoparticles are found to exhibit a relaxivity (R1) of 292 109 mM-1 s-1 per particle. The polymersomes are also found to exhibit unique pharmacokinetics with a circulation half-life of >3.5 h and predominantly renal clearance.
UR - http://www.scopus.com/inward/record.url?scp=72649092807&partnerID=8YFLogxK
U2 - 10.1002/adfm.200901253
DO - 10.1002/adfm.200901253
M3 - Article
C2 - 23293575
AN - SCOPUS:72649092807
SN - 1616-301X
VL - 19
SP - 3753
EP - 3759
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 23
ER -