TY - JOUR
T1 - Pooled-DNA sequencing identifies novel causative variants in PSEN1, GRN and MAPT in a clinical early-onset and familial Alzheimer's disease Ibero-American cohort
AU - Jin, Sheng Chih
AU - Pastor, Pau
AU - Cooper, Breanna
AU - Cervantes, Sebastian
AU - Benitez, Bruno A.
AU - Razquin, Cristina
AU - Goate, Alison
AU - Cruchaga, Carlos
N1 - Funding Information:
The Iberian Parkinson’s Disease Genetics Study Group Researchers: Jordi Gascon, Jaume Campdelacreu, and Ramon Rene (Department of Neurology, Hospital Universitari de Bellvitge, Barcelona, Spain), Elena Alonso and Elena Lorenzo (Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research University of Navarra School of Medicine), Jorge Lorenzo Otero and Eliana Pereyra (Department of Neuropsychology, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay), Victor Raggio and Maria Mirta Rodríguez (Department of Genetics, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay), Rodolfo Ferrando (Department of Nuclear Medicine, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay), Pablo Martínez-Lage (Fundación CITA-Alzheimer, San Sebastian, Spain), and Manuel Seijo-Martínez (Department of Neurology, Hospital do Salnés, Pontevedra, Spain). We gratefully thank Kevin Mayo for preparing the DNA samples and Gabe Haller and Francesco Vallania for help with sequencing data analysis. We acknowledge the expert technical assistance of the Genome Technology Access Center of Washington University in St. Louis. This work was supported by grants from the National Institutes of Health (P30-NS069329-01 and R01-AG035083). This study was supported by the FIMA project Center for Applied Medical Research (Centro de Investigación Medica Aplicada, CIMA) and a grant to PP from the Department of Health of the Government of Navarra (13085 and 3/2008).
PY - 2012
Y1 - 2012
N2 - Introduction. Some familial Alzheimer's disease (AD) cases are caused by rare and highly-penetrant mutations in APP, PSEN1, and PSEN2. Mutations in GRN and MAPT, two genes associated with frontotemporal dementia (FTD), have been found in clinically diagnosed AD cases. Due to the dramatic developments in next-generation sequencing (NGS), high-throughput sequencing of targeted genomic regions of the human genome in many individuals in a single run is now cheap and feasible. Recent findings favor the rare variant-common disease hypothesis by which the combination effects of rare variants could explain a large proportion of the heritability. We utilized NGS to identify rare and pathogenic variants in APP, PSEN1, PSEN2, GRN, and MAPT in an Ibero-American cohort. Methods. We performed pooled-DNA sequencing of each exon and flanking sequences in APP, PSEN1, PSEN2, MAPT and GRN in 167 clinical and 5 autopsy-confirmed AD cases (15 familial early-onset, 136 sporadic early-onset and 16 familial late-onset) from Spain and Uruguay using NGS. Follow-up genotyping was used to validate variants. After genotyping additional controls, we performed segregation and functional analyses to determine the pathogenicity of validated variants. Results: We identified a novel G to T transition (g.38816G>T) in exon 6 of PSEN1 in a sporadic early-onset AD case, resulting in a previously described pathogenic p.L173F mutation. A pathogenic p.L392V mutation in exon 11 was found in one familial early-onset AD case. We also identified a novel CC insertion (g.10974-10975insCC) in exon 8 of GRN, which introduced a premature stop codon, resulting in nonsense-mediated mRNA decay. This GRN mutation was associated with lower GRN plasma levels, as previously reported for other GRN pathogenic mutations. We found two variants in MAPT (p.A152T, p.S318L) present only in three AD cases but not controls, suggesting that these variants could be risk factors for the disease. Conclusions: We found pathogenic mutations in PSEN1, GRN and MAPT in 2.33% of the screened cases. This study suggests that pathogenic mutations or risk variants in MAPT and in GRN are as frequent in clinical AD cases as mutations in APP, PSEN1 and PSEN2, highlighting that pleiotropy of MAPT or GRN mutations can influence both FTD and AD phenotypic traits.
AB - Introduction. Some familial Alzheimer's disease (AD) cases are caused by rare and highly-penetrant mutations in APP, PSEN1, and PSEN2. Mutations in GRN and MAPT, two genes associated with frontotemporal dementia (FTD), have been found in clinically diagnosed AD cases. Due to the dramatic developments in next-generation sequencing (NGS), high-throughput sequencing of targeted genomic regions of the human genome in many individuals in a single run is now cheap and feasible. Recent findings favor the rare variant-common disease hypothesis by which the combination effects of rare variants could explain a large proportion of the heritability. We utilized NGS to identify rare and pathogenic variants in APP, PSEN1, PSEN2, GRN, and MAPT in an Ibero-American cohort. Methods. We performed pooled-DNA sequencing of each exon and flanking sequences in APP, PSEN1, PSEN2, MAPT and GRN in 167 clinical and 5 autopsy-confirmed AD cases (15 familial early-onset, 136 sporadic early-onset and 16 familial late-onset) from Spain and Uruguay using NGS. Follow-up genotyping was used to validate variants. After genotyping additional controls, we performed segregation and functional analyses to determine the pathogenicity of validated variants. Results: We identified a novel G to T transition (g.38816G>T) in exon 6 of PSEN1 in a sporadic early-onset AD case, resulting in a previously described pathogenic p.L173F mutation. A pathogenic p.L392V mutation in exon 11 was found in one familial early-onset AD case. We also identified a novel CC insertion (g.10974-10975insCC) in exon 8 of GRN, which introduced a premature stop codon, resulting in nonsense-mediated mRNA decay. This GRN mutation was associated with lower GRN plasma levels, as previously reported for other GRN pathogenic mutations. We found two variants in MAPT (p.A152T, p.S318L) present only in three AD cases but not controls, suggesting that these variants could be risk factors for the disease. Conclusions: We found pathogenic mutations in PSEN1, GRN and MAPT in 2.33% of the screened cases. This study suggests that pathogenic mutations or risk variants in MAPT and in GRN are as frequent in clinical AD cases as mutations in APP, PSEN1 and PSEN2, highlighting that pleiotropy of MAPT or GRN mutations can influence both FTD and AD phenotypic traits.
UR - http://www.scopus.com/inward/record.url?scp=84868030363&partnerID=8YFLogxK
U2 - 10.1186/alzrt137
DO - 10.1186/alzrt137
M3 - Article
C2 - 22906081
AN - SCOPUS:84868030363
SN - 1758-9193
VL - 4
JO - Alzheimer's Research and Therapy
JF - Alzheimer's Research and Therapy
IS - 4
M1 - 34
ER -