TY - JOUR
T1 - Poly(ADP-ribose) polymerase 1 induces cardiac fibrosis by mediating mammalian target of rapamycin activity
AU - Sun, Shuya
AU - Hu, Yuehuai
AU - Zheng, Qiyao
AU - Guo, Zhen
AU - Sun, Duanping
AU - Chen, Shaorui
AU - Zhang, Yiqiang
AU - Liu, Peiqing
AU - Lu, Jing
AU - Jiang, Jianmin
N1 - Publisher Copyright:
© 2019 Wiley Periodicals, Inc.
PY - 2019/4
Y1 - 2019/4
N2 - Cardiac fibrosis is involved in nearly all forms of heart diseases and is characterized by excessive deposition of extracellular matrix proteins by cardiac fibroblasts (CFs). We and others have reported the possibility of poly(ADP-ribose) polymerase 1 (PARP1), the founding subtype of the PARPs enzyme family, as a novel therapeutic target of heart diseases. The cardiac fibrotic induction of mammalian target of rapamycin (mTOR) is mainly due to collagen expression, Smad3- and p53/JNK-mediated apoptosis. However, the possible link between PARP1 and mTOR in the progression of cardiac fibrosis remains unclear. In this study, PARP1 protein expression, and the activity of mTOR and its three target substrates (p70 ribosomal S6 Kinase 1, eukaryotic initiation factor 4E-binding protein 1, and UNC51like kinase 1) were augmented; meanwhile, the nicotinamide adenine dinucleotide (NAD) content was significantly reduced in the process of cardiac fibrosis in vivo and in vitro. Sprague-Dawley rats were intraperitoneally injected with 3-aminobenzamide (3AB) (20 mg/kg/d; a well-established PARP1 inhibitor) or rapamycin (Rapa; 1 mg/kg/d; used for mTOR inhibition) 7 days after abdominal aortic constriction (AAC) surgery for 6 weeks. Pretreatment of 3AB or Rapa both relieved AAC-caused cardiac fibrosis and heart dysfunction. Overexpression of PARP1 with adenovirus carrying PARP1 gene specifically transduced into the hearts via intramyocardial multipoint injection caused similar myocardial damage. In CFs, preincubation with PARP1 or mTOR inhibitors all blocked TGF-β1 induced cardiac fibrosis. PARP1 overexpression evoked cardiac fibrosis, which could be antagonized by mTOR inhibitors or NAD supplementation in CFs. These results provide novel and compelling evidence that PARP1 exacerbated cardiac fibrosis, which was partially attributed to NAD-dependent activation of mTOR.
AB - Cardiac fibrosis is involved in nearly all forms of heart diseases and is characterized by excessive deposition of extracellular matrix proteins by cardiac fibroblasts (CFs). We and others have reported the possibility of poly(ADP-ribose) polymerase 1 (PARP1), the founding subtype of the PARPs enzyme family, as a novel therapeutic target of heart diseases. The cardiac fibrotic induction of mammalian target of rapamycin (mTOR) is mainly due to collagen expression, Smad3- and p53/JNK-mediated apoptosis. However, the possible link between PARP1 and mTOR in the progression of cardiac fibrosis remains unclear. In this study, PARP1 protein expression, and the activity of mTOR and its three target substrates (p70 ribosomal S6 Kinase 1, eukaryotic initiation factor 4E-binding protein 1, and UNC51like kinase 1) were augmented; meanwhile, the nicotinamide adenine dinucleotide (NAD) content was significantly reduced in the process of cardiac fibrosis in vivo and in vitro. Sprague-Dawley rats were intraperitoneally injected with 3-aminobenzamide (3AB) (20 mg/kg/d; a well-established PARP1 inhibitor) or rapamycin (Rapa; 1 mg/kg/d; used for mTOR inhibition) 7 days after abdominal aortic constriction (AAC) surgery for 6 weeks. Pretreatment of 3AB or Rapa both relieved AAC-caused cardiac fibrosis and heart dysfunction. Overexpression of PARP1 with adenovirus carrying PARP1 gene specifically transduced into the hearts via intramyocardial multipoint injection caused similar myocardial damage. In CFs, preincubation with PARP1 or mTOR inhibitors all blocked TGF-β1 induced cardiac fibrosis. PARP1 overexpression evoked cardiac fibrosis, which could be antagonized by mTOR inhibitors or NAD supplementation in CFs. These results provide novel and compelling evidence that PARP1 exacerbated cardiac fibrosis, which was partially attributed to NAD-dependent activation of mTOR.
KW - NAD
KW - cardiac fibrosis
KW - mammalian target of rapamycin (mTOR)
KW - poly(ADP-ribose) polymerase 1 (PARP1)
KW - transforming growth factor-β1 (TGF-β1)
UR - http://www.scopus.com/inward/record.url?scp=85059912937&partnerID=8YFLogxK
U2 - 10.1002/jcb.26649
DO - 10.1002/jcb.26649
M3 - Article
C2 - 29278652
AN - SCOPUS:85059912937
SN - 0730-2312
VL - 120
SP - 4813
EP - 4826
JO - Journal of cellular biochemistry
JF - Journal of cellular biochemistry
IS - 4
ER -