TY - JOUR
T1 - Poly C binding protein 1 represses autophagy through downregulation of LC3B to promote tumor cell apoptosis in starvation
AU - Zhang, Wenliang
AU - Shi, Hongshun
AU - Zhang, Mingming
AU - Liu, Bin
AU - Mao, Shuai
AU - Li, Li
AU - Tong, Fang
AU - Liu, Guoliang
AU - Yang, Shulan
AU - Wang, Haihe
N1 - Publisher Copyright:
© 2016 Elsevier Ltd. All rights reserved.
PY - 2016/4/1
Y1 - 2016/4/1
N2 - Accumulating evidences indicate that poly C binding protein (PCBP1) is downregulated in various carcinomas as a tumor suppressor, but the underlying mechanism in suppression of tumorigenesis still remains elusive. Here, we found that PCBP1 overexpression attenuates tumor cell growth upon serum-free starvation. Notably, the autophagic degradation inhibitor, chloroquine, could mimic this suppressive effect in tumor cell growth. Autophagy analyses demonstrated that PCBP1 overexpression blocked autophagic flux of tumor cells under starvation conditions, while PCBP1 downregulation in turn refueled this autophagic flux, protecting cells from death. Mechanistically, PCBP1 overexpression attenuated microtubule-associated protein Light chain 3 (LC3B) mRNA stability to repress LC3B expression, resulting in the autophagy inhibition. Consequently, PCBP1 overexpression strongly triggered the caspase 3 and 8-mediated apoptosis of tumor cells and downregulated anti-apoptotic Bcl-2 expression upon starvation, which could be further synergized by autophagic inhibitor, indicating that PCBP1 not only inhibits tumor cell autophagy, but also renders them to apoptosis. Taken together, our results uncovered a novel mechanism of PCBP1 in repressing autophagy-mediated cell survival and indicated that inhibition of tumor cell autophagy by PCBP1 upregulation or with autophagic inhibitors could be an effective therapeutical strategy to colon and ovary tumors with low PCBP1 expression.
AB - Accumulating evidences indicate that poly C binding protein (PCBP1) is downregulated in various carcinomas as a tumor suppressor, but the underlying mechanism in suppression of tumorigenesis still remains elusive. Here, we found that PCBP1 overexpression attenuates tumor cell growth upon serum-free starvation. Notably, the autophagic degradation inhibitor, chloroquine, could mimic this suppressive effect in tumor cell growth. Autophagy analyses demonstrated that PCBP1 overexpression blocked autophagic flux of tumor cells under starvation conditions, while PCBP1 downregulation in turn refueled this autophagic flux, protecting cells from death. Mechanistically, PCBP1 overexpression attenuated microtubule-associated protein Light chain 3 (LC3B) mRNA stability to repress LC3B expression, resulting in the autophagy inhibition. Consequently, PCBP1 overexpression strongly triggered the caspase 3 and 8-mediated apoptosis of tumor cells and downregulated anti-apoptotic Bcl-2 expression upon starvation, which could be further synergized by autophagic inhibitor, indicating that PCBP1 not only inhibits tumor cell autophagy, but also renders them to apoptosis. Taken together, our results uncovered a novel mechanism of PCBP1 in repressing autophagy-mediated cell survival and indicated that inhibition of tumor cell autophagy by PCBP1 upregulation or with autophagic inhibitors could be an effective therapeutical strategy to colon and ovary tumors with low PCBP1 expression.
KW - Apoptosis
KW - Autophagy
KW - Cancer
KW - LC3B
KW - PCBP1
UR - http://www.scopus.com/inward/record.url?scp=84959126262&partnerID=8YFLogxK
U2 - 10.1016/j.biocel.2016.02.009
DO - 10.1016/j.biocel.2016.02.009
M3 - Article
C2 - 26880484
AN - SCOPUS:84959126262
SN - 1357-2725
VL - 73
SP - 127
EP - 136
JO - International Journal of Biochemistry and Cell Biology
JF - International Journal of Biochemistry and Cell Biology
ER -