TY - JOUR
T1 - Podokinetic after-rotation following unilateral and bilateral podokinetic stimulation
AU - Earhart, Gammon M.
AU - Melvill Jones, G.
AU - Horak, F. B.
AU - Block, E. W.
AU - Weber, K. D.
AU - Fletcher, W. A.
PY - 2002
Y1 - 2002
N2 - Previous studies demonstrated an aftereffect of walking on a rotating treadmill, involving inadvertent circular navigation with eyes closed [podokinetic after-rotation (PKAR)]. We compared PKAR following unilateral and bilateral podokinetic (PK) stimulation to determine whether the left and right legs could be independently adapted. Each subject performed two sessions of PK stimulation, stepping in place with one foot on either side of the axis of a rotating disk. Subjects experienced bilateral stimulation (i.e., both left and right feet stepped on the rotating disk) in one session and unilateral stimulation (i.e., the left foot stepped on the rotating disk and the right foot stepped on a stationary surface) in the other. Following stimulation, we recorded foot lift-off and touchdown times and pelvic angular velocity while subjects stepped in place on a stationary surface. PKAR velocity following unilateral stimulation was lower than that following bilateral stimulation. Following bilateral stimulation, pelvic rotation was in the counterclockwise (CCW) direction during single-limb support on both the left and right sides. Immediately following left unilateral stimulation, subjects demonstrated CCW pelvic rotation during left single-limb support but not during right single-limb support. Across the first 13 strides, the difference between left and right sides diminished; pelvic angular velocity was then CCW during single-limb support on both sides. This suggests that both the adapted left and the unadapted right limb influenced the final PKAR response with information from the two limbs being integrated over the first few strides.
AB - Previous studies demonstrated an aftereffect of walking on a rotating treadmill, involving inadvertent circular navigation with eyes closed [podokinetic after-rotation (PKAR)]. We compared PKAR following unilateral and bilateral podokinetic (PK) stimulation to determine whether the left and right legs could be independently adapted. Each subject performed two sessions of PK stimulation, stepping in place with one foot on either side of the axis of a rotating disk. Subjects experienced bilateral stimulation (i.e., both left and right feet stepped on the rotating disk) in one session and unilateral stimulation (i.e., the left foot stepped on the rotating disk and the right foot stepped on a stationary surface) in the other. Following stimulation, we recorded foot lift-off and touchdown times and pelvic angular velocity while subjects stepped in place on a stationary surface. PKAR velocity following unilateral stimulation was lower than that following bilateral stimulation. Following bilateral stimulation, pelvic rotation was in the counterclockwise (CCW) direction during single-limb support on both the left and right sides. Immediately following left unilateral stimulation, subjects demonstrated CCW pelvic rotation during left single-limb support but not during right single-limb support. Across the first 13 strides, the difference between left and right sides diminished; pelvic angular velocity was then CCW during single-limb support on both sides. This suggests that both the adapted left and the unadapted right limb influenced the final PKAR response with information from the two limbs being integrated over the first few strides.
UR - http://www.scopus.com/inward/record.url?scp=0036095484&partnerID=8YFLogxK
U2 - 10.1152/jn.00464.2001
DO - 10.1152/jn.00464.2001
M3 - Article
C2 - 11826079
AN - SCOPUS:0036095484
SN - 0022-3077
VL - 87
SP - 1138
EP - 1141
JO - Journal of neurophysiology
JF - Journal of neurophysiology
IS - 2
ER -