TY - JOUR
T1 - Ploidy-Seq
T2 - Inferring mutational chronology by sequencing polyploid tumor subpopulations
AU - Malhotra, Ankit
AU - Wang, Yong
AU - Waters, Jill
AU - Chen, Ken
AU - Meric-Bernstam, Funda
AU - Hall, Ira M.
AU - Navin, Nicholas E.
N1 - Funding Information:
We thank Michael Wigler, James Hicks, and Jude Kendall for support on this project and important discussions. We also thank Linda Rodgers and Jennifer Troge for help with experimental procedures, and Colby Chiang for manuscript editing. This research was supported by grants to NN from TC Hsu, the Alice-Reynolds Kleberg Foundation, two grants from NCI/NIH (1RO1CA169244-01 and R21CA174397-01), and a grant from the MD Anderson Center for Genetic & Genomics. NN is a Nadia’s Gift Foundation Damon Runyon-Rachleff Innovator (DRR-25-13). This work was supported by an NCI/NIH grant to KC (1R01CA172652-01A1) and an RCRR UL1TR000371 (to FMB and KC) and the MD Anderson Cancer support grant (P30 CA016672). This work was also supported by a DoD Breast Cancer Post Doctoral Fellowship to AM, and an NIH New Innovator Award (DP2OD006493-01) and Burroughs Wellcome Fund Career Award to IH. This work was also supported by the Sequencing Core Facility Grant (CA016672) and the Flow Cytometry and Cellular Imaging Facility (CA016672) grants which are supported by grants to the MD Anderson Cancer Center from the National Institute of Health.
Publisher Copyright:
© 2015 Malhotra et al.
PY - 2015/1/28
Y1 - 2015/1/28
N2 - Human cancers are frequently polyploid, containing multiple aneuploid subpopulations that differ in total DNA content. In this study we exploit this property to reconstruct evolutionary histories, by assuming that mutational complexity increases with time. We developed an experimental method called Ploidy-Seq that uses flow-sorting to isolate and enrich subpopulations with different ploidy prior to next-generation genome sequencing. We applied Ploidy-Seq to a patient with a triple-negative (ER-/PR-/HER2-) ductal carcinoma and performed whole-genome sequencing to trace the evolution of point mutations, indels, copy number aberrations, and structural variants in three clonal subpopulations during tumor growth. Our data show that few mutations (8% to 22%) were shared between all three subpopulations, and that the most aggressive clones comprised a minority of the tumor mass. We expect that Ploidy-Seq will have broad applications for delineating clonal diversity and investigating genome evolution in many human cancers.
AB - Human cancers are frequently polyploid, containing multiple aneuploid subpopulations that differ in total DNA content. In this study we exploit this property to reconstruct evolutionary histories, by assuming that mutational complexity increases with time. We developed an experimental method called Ploidy-Seq that uses flow-sorting to isolate and enrich subpopulations with different ploidy prior to next-generation genome sequencing. We applied Ploidy-Seq to a patient with a triple-negative (ER-/PR-/HER2-) ductal carcinoma and performed whole-genome sequencing to trace the evolution of point mutations, indels, copy number aberrations, and structural variants in three clonal subpopulations during tumor growth. Our data show that few mutations (8% to 22%) were shared between all three subpopulations, and that the most aggressive clones comprised a minority of the tumor mass. We expect that Ploidy-Seq will have broad applications for delineating clonal diversity and investigating genome evolution in many human cancers.
UR - http://www.scopus.com/inward/record.url?scp=84924331377&partnerID=8YFLogxK
U2 - 10.1186/s13073-015-0127-5
DO - 10.1186/s13073-015-0127-5
M3 - Article
AN - SCOPUS:84924331377
SN - 1756-994X
VL - 7
JO - Genome medicine
JF - Genome medicine
IS - 1
M1 - 6
ER -