Abstract
Long-term potentiation (LTP) refers to a persisting enhancement of neurotransmission that follows high-frequency activation of certain synapses1. Although both pre- and postsynaptic mechanisms contribute to LTP2,3, it is believed that the enhanced release of neurotransmitter that accompanies this process results from the production of a diffusible messenger in postsynaptic neurons which traverses the synaptic cleft and alters the function of presynaptic terminals4,5. One candidate for such a messenger is arachidonic acid, a metabolite produced by phospholipase A2 which augments synaptic transmission when coupled with presynaptic stimulation5. However, the effects of arachidonic acid require activation of the postsynaptic receptor for N-methyl-D-aspartate6. Previously we found that platelet-activating factor (1 O-alkyl-2-acetyl-sn-glycero-3-phosphocholine), another phospholipase A 2-derived messenger7, selectively enhances excitatory postsynaptic currents in hippocampal neurons by a presynaptic mechanism8. We now present evidence that platelet-activating factor, acting at a receptor localized to synaptic regions, participates in LTP in the CA1 region of rat hippocampal slices and may serve as part of a retrograde signalling cascade.
Original language | English |
---|---|
Pages (from-to) | 175-179 |
Number of pages | 5 |
Journal | Nature |
Volume | 367 |
Issue number | 6459 |
DOIs | |
State | Published - 1994 |