TY - JOUR
T1 - Plasma Neurofilament Light for Prediction of Disease Progression in Familial Frontotemporal Lobar Degeneration
AU - ALLFTD and GENFI consortia
AU - Rojas, Julio C.
AU - Wang, Ping
AU - Staffaroni, Adam M.
AU - Heller, Carolin
AU - Cobigo, Yann
AU - Wolf, Amy
AU - Goh, Sheng Yang M.
AU - Ljubenkov, Peter A.
AU - Heuer, Hilary W.
AU - Fong, Jamie C.
AU - Taylor, Joanne B.
AU - Veras, Eliseo
AU - Song, Linan
AU - Jeromin, Andreas
AU - Hanlon, David
AU - Yu, Lili
AU - Khinikar, Arvind
AU - Sivasankaran, Rajeev
AU - Kieloch, Agnieszka
AU - Valentin, Marie Anne
AU - Karydas, Anna M.
AU - Mitic, Laura L.
AU - Pearlman, Rodney
AU - Kornak, John
AU - Kramer, Joel H.
AU - Miller, Bruce L.
AU - Kantarci, Kejal
AU - Knopman, David S.
AU - Graff-Radford, Neill
AU - Petrucelli, Leonard
AU - Rademakers, Rosa
AU - Irwin, David J.
AU - Grossman, Murray
AU - Ramos, Eliana Marisa
AU - Coppola, Giovanni
AU - Mendez, Mario F.
AU - Bordelon, Yvette
AU - Dickerson, Bradford C.
AU - Ghoshal, Nupur
AU - Huey, Edward D.
AU - Mackenzie, Ian R.
AU - Appleby, Brian S.
AU - Domoto-Reilly, Kimiko
AU - Hsiung, Ging Yuek R.
AU - Toga, Arthur W.
AU - Weintraub, Sandra
AU - Kaufer, Daniel I.
AU - Kerwin, Diana
AU - Litvan, Irene
AU - Onyike, Chiadikaobi U.
N1 - Publisher Copyright:
Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
PY - 2021/5/4
Y1 - 2021/5/4
N2 - OBJECTIVE: We tested the hypothesis that plasma neurofilament light chain (NfL) identifies asymptomatic carriers of familial frontotemporal lobar degeneration (FTLD)-causing mutations at risk of disease progression. METHODS: Baseline plasma NfL concentrations were measured with single-molecule array in original (n = 277) and validation (n = 297) cohorts. C9orf72, GRN, and MAPT mutation carriers and noncarriers from the same families were classified by disease severity (asymptomatic, prodromal, and full phenotype) using the CDR Dementia Staging Instrument plus behavior and language domains from the National Alzheimer's Disease Coordinating Center FTLD module (CDR+NACC-FTLD). Linear mixed-effect models related NfL to clinical variables. RESULTS: In both cohorts, baseline NfL was higher in asymptomatic mutation carriers who showed phenoconversion or disease progression compared to nonprogressors (original: 11.4 ± 7 pg/mL vs 6.7 ± 5 pg/mL, p = 0.002; validation: 14.1 ± 12 pg/mL vs 8.7 ± 6 pg/mL, p = 0.035). Plasma NfL discriminated symptomatic from asymptomatic mutation carriers or those with prodromal disease (original cutoff: 13.6 pg/mL, 87.5% sensitivity, 82.7% specificity; validation cutoff: 19.8 pg/mL, 87.4% sensitivity, 84.3% specificity). Higher baseline NfL correlated with worse longitudinal CDR+NACC-FTLD sum of boxes scores, neuropsychological function, and atrophy, regardless of genotype or disease severity, including asymptomatic mutation carriers. CONCLUSIONS: Plasma NfL identifies asymptomatic carriers of FTLD-causing mutations at short-term risk of disease progression and is a potential tool to select participants for prevention clinical trials. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT02372773 and NCT02365922. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that in carriers of FTLD-causing mutations, elevation of plasma NfL predicts short-term risk of clinical progression.
AB - OBJECTIVE: We tested the hypothesis that plasma neurofilament light chain (NfL) identifies asymptomatic carriers of familial frontotemporal lobar degeneration (FTLD)-causing mutations at risk of disease progression. METHODS: Baseline plasma NfL concentrations were measured with single-molecule array in original (n = 277) and validation (n = 297) cohorts. C9orf72, GRN, and MAPT mutation carriers and noncarriers from the same families were classified by disease severity (asymptomatic, prodromal, and full phenotype) using the CDR Dementia Staging Instrument plus behavior and language domains from the National Alzheimer's Disease Coordinating Center FTLD module (CDR+NACC-FTLD). Linear mixed-effect models related NfL to clinical variables. RESULTS: In both cohorts, baseline NfL was higher in asymptomatic mutation carriers who showed phenoconversion or disease progression compared to nonprogressors (original: 11.4 ± 7 pg/mL vs 6.7 ± 5 pg/mL, p = 0.002; validation: 14.1 ± 12 pg/mL vs 8.7 ± 6 pg/mL, p = 0.035). Plasma NfL discriminated symptomatic from asymptomatic mutation carriers or those with prodromal disease (original cutoff: 13.6 pg/mL, 87.5% sensitivity, 82.7% specificity; validation cutoff: 19.8 pg/mL, 87.4% sensitivity, 84.3% specificity). Higher baseline NfL correlated with worse longitudinal CDR+NACC-FTLD sum of boxes scores, neuropsychological function, and atrophy, regardless of genotype or disease severity, including asymptomatic mutation carriers. CONCLUSIONS: Plasma NfL identifies asymptomatic carriers of FTLD-causing mutations at short-term risk of disease progression and is a potential tool to select participants for prevention clinical trials. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT02372773 and NCT02365922. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that in carriers of FTLD-causing mutations, elevation of plasma NfL predicts short-term risk of clinical progression.
UR - http://www.scopus.com/inward/record.url?scp=85107091043&partnerID=8YFLogxK
U2 - 10.1212/WNL.0000000000011848
DO - 10.1212/WNL.0000000000011848
M3 - Article
C2 - 33827960
AN - SCOPUS:85107091043
SN - 0028-3878
VL - 96
SP - e2296-e2312
JO - Neurology
JF - Neurology
IS - 18
ER -