PI3K inhibition enhances the anti-tumor effect of eribulin in triple negative breast cancer

Sandeep Rajput, Zhanfang Guo, Shunqiang Li, Cynthia X. Ma

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Loss of the tumor suppressor phosphatase and tensin homolog (PTEN) is commonly observed in triple negative breast cancer (TNBC), leading to activation of the phosphoinositide 3-kinase (PI3K) signaling to promote tumor cell growth and chemotherapy resistance. In this study, we investigated whether adding a pan-PI3K inhibitor could improve the cytotoxic effect of eribulin, a non-taxane microtubule inhibitor, in TNBC patient-derived xenograft models (PDX) with loss of PTEN, and the underlying molecular mechanisms. Three TNBC-PDX models (WHIM6, WHIM12 and WHIM21), all with loss of PTEN expression, were tested for their response to BKM120 and eribulin, alone or in combination in vivo. In addition, the effect of drug treatment on cell proliferation and cell cycle progression were also performed in vitro using a panel of TNBC cell lines, including 2 derived from PDX models. The combination of eribulin and BKM120 led to additive or synergistic anti-tumor effect in 2 of the 3 PDX models, accompanied by an enhanced mitotic arrest and apoptosis in sensitive PDX models. In addition, the combination was synergistic in reducing mammosphere formation, and markers for epithelial-mesenchymal transition (EMT). In conclusion, PI3K inhibition induces synergistic anti-tumor effect when combined with eribulin, by enhancing mitotic arrest and apoptosis, as well as, reducing the cancer stem cell population. This study provides a preclinical rationale to investigate the therapeutic potential for the combination of PI3K inhibition and eribulin in the difficult to treat TNBC. Further studies are needed to identify the biomarkers of response for target patient selection.

Original languageEnglish
Pages (from-to)3667-3680
Number of pages14
JournalOncotarget
Volume10
Issue number38
DOIs
StatePublished - 2019

Keywords

  • BKM120
  • Eribulin
  • PI3K inhibitor
  • Patient-derived xenograft
  • Triple-negative breast cancer

Fingerprint

Dive into the research topics of 'PI3K inhibition enhances the anti-tumor effect of eribulin in triple negative breast cancer'. Together they form a unique fingerprint.

Cite this