TY - JOUR
T1 - PI3-kinase activity modulates apo B available for hepatic VLDL production in apobec-1-/- mice
AU - Chirieac, Doru V.
AU - Davidson, Nicholas O.
AU - Sparks, Charles E.
AU - Sparks, Janet D.
PY - 2006
Y1 - 2006
N2 - Insulin regulates hepatic VLDL production by activation of phosphatidylinositide 3-kinase (PI3-kinase) which decreases apo B available for lipid assembly. The current study evaluated the dependence of the VLDL apolipoprotein B (apo B) pathway on PI3-kinase activity in vivo. VLDL production was examined in B100 only, apo B mRNA editing catalytic subunit 1 (apobec-1-/-) mice, using the Triton WR 1339 method. Glucose injection suppressed VLDL triglyceride production by 28% in male and by 32% in female mice compared with saline-injected controls. When wortmannin was injected to inhibit PI3-kinase, VLDL triglyceride production was increased by 52% in males and by 89% in females, and VLDL B100 levels paralleled triglyceride changes. Pulse-chase experiments in primary mouse hepatocytes showed that wortmannin increased net freshly synthesized B100 availability by >35%. To test whether physiological insulin resistance produced equivalent effects to wortmannin, we studied male apobec-1-/- mice who became hyperlipidemic on being fed a fructoseenriched diet. Fructose-fed apobec-1 -/- mice had significantly higher VLDL triglyceride and B100 production rates compared with chowfed mice, and rates were refractile to glucose or wortmannin. Hepatic VLDL triglyceride and B100 production in wortmannin-injected chow-fed mice equaled that observed in fructose-fed mice. Together, results suggest in vivo and in vitro that wortmannin-sensitive PI3-kinases maintain a basal level of VLDL suppression that is sensitive to changes in activation and that can increase VLDL production when PI3-kinase is inhibited to levels similar to those induced by insulin resistance.
AB - Insulin regulates hepatic VLDL production by activation of phosphatidylinositide 3-kinase (PI3-kinase) which decreases apo B available for lipid assembly. The current study evaluated the dependence of the VLDL apolipoprotein B (apo B) pathway on PI3-kinase activity in vivo. VLDL production was examined in B100 only, apo B mRNA editing catalytic subunit 1 (apobec-1-/-) mice, using the Triton WR 1339 method. Glucose injection suppressed VLDL triglyceride production by 28% in male and by 32% in female mice compared with saline-injected controls. When wortmannin was injected to inhibit PI3-kinase, VLDL triglyceride production was increased by 52% in males and by 89% in females, and VLDL B100 levels paralleled triglyceride changes. Pulse-chase experiments in primary mouse hepatocytes showed that wortmannin increased net freshly synthesized B100 availability by >35%. To test whether physiological insulin resistance produced equivalent effects to wortmannin, we studied male apobec-1-/- mice who became hyperlipidemic on being fed a fructoseenriched diet. Fructose-fed apobec-1 -/- mice had significantly higher VLDL triglyceride and B100 production rates compared with chowfed mice, and rates were refractile to glucose or wortmannin. Hepatic VLDL triglyceride and B100 production in wortmannin-injected chow-fed mice equaled that observed in fructose-fed mice. Together, results suggest in vivo and in vitro that wortmannin-sensitive PI3-kinases maintain a basal level of VLDL suppression that is sensitive to changes in activation and that can increase VLDL production when PI3-kinase is inhibited to levels similar to those induced by insulin resistance.
KW - Very low-density lipoprotein
UR - http://www.scopus.com/inward/record.url?scp=33748319511&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00472.2005
DO - 10.1152/ajpgi.00472.2005
M3 - Article
C2 - 16798720
AN - SCOPUS:33748319511
SN - 0193-1857
VL - 291
SP - G382-G388
JO - American Journal of Physiology - Gastrointestinal and Liver Physiology
JF - American Journal of Physiology - Gastrointestinal and Liver Physiology
IS - 3
ER -