Physical activity classification using time-frequency signatures of motion artifacts in multi-channel electrical impedance plethysmographs

Hassan Aqeel Khan, Amit Gore, Jeff Ashe, Shantanu Chakrabartty

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Physical activities are known to introduce motion artifacts in electrical impedance plethysmographic (EIP) sensors. Existing literature considers motion artifacts as a nuisance and generally discards the artifact containing portion of the sensor output. This paper examines the notion of exploiting motion artifacts for detecting the underlying physical activities which give rise to the artifacts in question. In particular, we investigate whether the artifact pattern associated with a physical activity is unique; and does it vary from one human-subject to another? Data was recorded from 19 adult human-subjects while conducting 5 distinct, artifact inducing, activities. A set of novel features based on the time-frequency signatures of the sensor outputs are then constructed. Our analysis demonstrates that these features enable high accuracy detection of the underlying physical activity. Using an SVM classifier we are able to differentiate between 5 distinct physical activities (coughing, reaching, walking, eating and rolling-on-bed) with an average accuracy of 85.46%. Classification is performed solely using features designed specifically to capture the time-frequency signatures of different physical activities. This enables us to measure both respiratory and motion information using only one type of sensor. This is in contrast to conventional approaches to physical activity monitoring; which rely on additional hardware such as accelerometers to capture activity information.

Original languageEnglish
Title of host publication2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationSmarter Technology for a Healthier World, EMBC 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2944-2947
Number of pages4
ISBN (Electronic)9781509028092
DOIs
StatePublished - Sep 13 2017
Event39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017 - Jeju Island, Korea, Republic of
Duration: Jul 11 2017Jul 15 2017

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017
Country/TerritoryKorea, Republic of
CityJeju Island
Period07/11/1707/15/17

Fingerprint

Dive into the research topics of 'Physical activity classification using time-frequency signatures of motion artifacts in multi-channel electrical impedance plethysmographs'. Together they form a unique fingerprint.

Cite this