TY - JOUR
T1 - Phosphorylation of neurofibromin by PKC is a possible molecular switch in EGF receptor signaling in neural cells
AU - Mangoura, D.
AU - Sun, Y.
AU - Li, C.
AU - Singh, D.
AU - Gutmann, D. H.
AU - Flores, A.
AU - Ahmed, M.
AU - Vallianatos, G.
PY - 2006/2/2
Y1 - 2006/2/2
N2 - Children with neurofibromatosis (NF1) typically develop central nervous system (CNS) abnormalities, including aberrant proliferation of astrocytes and formation of benign astrocytomas. The NF1 gene encodes neurofibromin, a Ras-GAP, highly expressed in developing neural cells; the mechanism of regulation of neurofibromin as a Ras-GAP, remains however unknown. We now show that, in response to EGF, neurofibromin is in vivo phosphorylated on serine residues by PKC-α, in human, rat, and avian CNS cells and cell lines. EGF-induced PKC phosphorylation was prominent in the cysteine/serine-rich domain (CSRD) of neurofibromin, which lies in the N-terminus and upstream of the Ras-GAP domain (GRD), and this modification significantly increased the association of neurofibromin with actin in co-immunoprecipitations. In addition, we show that Ras activation in response to EGF was significantly lowered when C62B cells overexpressed a construct encoding both CSRD + GRD. Moreover, when PKC-α was downregulated, the Ras-GAP activity of CSRD + GRD was significantly diminished, whereas overexpressed GRD alone acted as a weaker GAP and in a PKC-independent manner. Most importantly, functional Ras inhibition and EGF signaling shifts were established at the single cell level in C6-derived cell lines stably overexpressing CSRD + GRD, when transient co-overexpression of Ras and PKC-depletion prior to stimulation with EGF-induced mitosis. Taken together, these data provide the first evidence of a functional, allosteric regulation of GRD by CSRD, which requires neurofibromin phosphorylation by PKC and association with the actin cytoskeleton. Our data may suggest a novel mechanism for regulating biological responses to EGF and provide a new aspect for the understanding of the aberrant proliferation seen in the CNS of children with NF1.
AB - Children with neurofibromatosis (NF1) typically develop central nervous system (CNS) abnormalities, including aberrant proliferation of astrocytes and formation of benign astrocytomas. The NF1 gene encodes neurofibromin, a Ras-GAP, highly expressed in developing neural cells; the mechanism of regulation of neurofibromin as a Ras-GAP, remains however unknown. We now show that, in response to EGF, neurofibromin is in vivo phosphorylated on serine residues by PKC-α, in human, rat, and avian CNS cells and cell lines. EGF-induced PKC phosphorylation was prominent in the cysteine/serine-rich domain (CSRD) of neurofibromin, which lies in the N-terminus and upstream of the Ras-GAP domain (GRD), and this modification significantly increased the association of neurofibromin with actin in co-immunoprecipitations. In addition, we show that Ras activation in response to EGF was significantly lowered when C62B cells overexpressed a construct encoding both CSRD + GRD. Moreover, when PKC-α was downregulated, the Ras-GAP activity of CSRD + GRD was significantly diminished, whereas overexpressed GRD alone acted as a weaker GAP and in a PKC-independent manner. Most importantly, functional Ras inhibition and EGF signaling shifts were established at the single cell level in C6-derived cell lines stably overexpressing CSRD + GRD, when transient co-overexpression of Ras and PKC-depletion prior to stimulation with EGF-induced mitosis. Taken together, these data provide the first evidence of a functional, allosteric regulation of GRD by CSRD, which requires neurofibromin phosphorylation by PKC and association with the actin cytoskeleton. Our data may suggest a novel mechanism for regulating biological responses to EGF and provide a new aspect for the understanding of the aberrant proliferation seen in the CNS of children with NF1.
KW - EGF signaling
KW - Neurofibromin
KW - PKC
KW - Tumor suppressor
UR - http://www.scopus.com/inward/record.url?scp=32244437769&partnerID=8YFLogxK
U2 - 10.1038/sj.onc.1209113
DO - 10.1038/sj.onc.1209113
M3 - Article
C2 - 16314845
AN - SCOPUS:32244437769
SN - 0950-9232
VL - 25
SP - 735
EP - 745
JO - Oncogene
JF - Oncogene
IS - 5
ER -