TY - JOUR
T1 - Phospho-ser784-vcp drives resistance of pancreatic ductal adenocarcinoma to genotoxic chemotherapies and predicts the chemo-sensitizing effect of vcp inhibitor
AU - Wang, Faliang
AU - Vij, Kiran
AU - Li, Lin
AU - Dodhiawala, Paarth
AU - Lim, Kian Huat
AU - Shao, Jieya
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/10/1
Y1 - 2021/10/1
N2 - Pancreatic ductal adenocarcinoma (PDAC) patients have a dismal prognosis due in large part to chemotherapy resistance. However, a small subset containing defects in the DNA damage response (DDR) pathways are chemotherapy-sensitive. Identifying intrinsic and therapeutically inducible DDR defects can improve precision and efficacy of chemotherapies for PDAC. DNA repair requires dynamic reorganization of chromatin-associated proteins, which is orchestrated by the AAA+ ATPase VCP. We recently discovered that the DDR function of VCP is selectively activated by Ser784 phosphorylation. In this paper, we show that pSer784-VCP but not total VCP levels in primary PDAC tumors negatively correlate with patient survival. In PDAC cell lines, different pSer784-VCP levels are induced by genotoxic chemotherapy agents and positively correlate with genome stability and cell survival. Causal effects of pSer784-VCP on DNA repair and cell survival were confirmed using VCP knockdown and functional rescue. Importantly, DNA damage-induced pSer784-VCP rather than total VCP levels in PDAC cell lines predict their chemotherapy response and chemo-sensitizing ability of selective VCP inhibitor NMS-873. Therefore, pSer784-VCP drives genotoxic chemotherapy resistance of PDAC, and can potentially be used as a predictive biomarker as well as a sensitizing target to enhance the chemotherapy response of PDAC.
AB - Pancreatic ductal adenocarcinoma (PDAC) patients have a dismal prognosis due in large part to chemotherapy resistance. However, a small subset containing defects in the DNA damage response (DDR) pathways are chemotherapy-sensitive. Identifying intrinsic and therapeutically inducible DDR defects can improve precision and efficacy of chemotherapies for PDAC. DNA repair requires dynamic reorganization of chromatin-associated proteins, which is orchestrated by the AAA+ ATPase VCP. We recently discovered that the DDR function of VCP is selectively activated by Ser784 phosphorylation. In this paper, we show that pSer784-VCP but not total VCP levels in primary PDAC tumors negatively correlate with patient survival. In PDAC cell lines, different pSer784-VCP levels are induced by genotoxic chemotherapy agents and positively correlate with genome stability and cell survival. Causal effects of pSer784-VCP on DNA repair and cell survival were confirmed using VCP knockdown and functional rescue. Importantly, DNA damage-induced pSer784-VCP rather than total VCP levels in PDAC cell lines predict their chemotherapy response and chemo-sensitizing ability of selective VCP inhibitor NMS-873. Therefore, pSer784-VCP drives genotoxic chemotherapy resistance of PDAC, and can potentially be used as a predictive biomarker as well as a sensitizing target to enhance the chemotherapy response of PDAC.
KW - Chemotherapy predictive biomarker
KW - Chemotherapy resistance
KW - DNA damage response
KW - Pancreatic ductal adenocarcinoma
KW - Synthetic lethality
UR - http://www.scopus.com/inward/record.url?scp=85116725919&partnerID=8YFLogxK
U2 - 10.3390/cancers13205076
DO - 10.3390/cancers13205076
M3 - Article
C2 - 34680224
AN - SCOPUS:85116725919
SN - 2072-6694
VL - 13
JO - Cancers
JF - Cancers
IS - 20
M1 - 5076
ER -