Abstract

Purpose: Stereotactic body radiation therapy is increasingly used to treat a variety of oligometastatic histologies, but few data exist for ovarian cancer. Ablative stereotactic body radiation therapy dosing is challenging in sites like the abdomen, pelvis, and central thorax due to proximity and motion of organs at risk. A novel radiation delivery method, stereotactic magnetic-resonance–guided online-adaptive radiation therapy (SMART), may improve the therapeutic index of stereotactic body radiation therapy through enhanced soft-tissue visualization, real-time nonionizing imaging, and ability to adapt to the anatomy-of-the-day, with the goal of producing systemic-therapy–free intervals. This phase I trial assessed feasibility, safety, and dosimetric advantage of SMART to treat ovarian oligometastases. Methods and Materials: Ten patients with recurrent oligometastatic ovarian cancer underwent SMART for oligometastasis ablation. Initial plans prescribed 35 Gy/5 fractions with goal 95% planning target volume coverage by 95% of prescription, with dose escalation permitted, subject to strict organ-at-risk dose constraints. Daily adaptive planning was used to protect organs-at-risk and/or increase target dose. Feasibility (successful delivery of >80% of fractions in the first on-table attempt) and safety of this approach was evaluated, in addition to efficacy, survival metrics, quality-of-life, prospective timing and dosimetric outcomes. Results: Ten women with seventeen ovarian oligometastases were treated with SMART, and 100% of treatment fractions were successfully delivered. Online adaptive plans were selected at time of treatment for 58% of fractions, due to initial plan violation of organs-at-risk constraints (84% of adapted fractions) or observed opportunity for planning target volume dose escalation (16% of adapted fractions), with a median on-table time of 64 minutes. A single Grade ≥3 acute (within 6 months of SMART) treatment-related toxicity (duodenal ulcer) was observed. Local control at 3 months was 94%; median progression-free survival was 10.9 months. Median Kaplan-Meier estimated systemic-therapy–free survival after radiation completion was 11.5 months, with concomitant quality-of-life improvements. Conclusions: SMART is feasible and safe for high-dose radiation therapy ablation of ovarian oligometastases of the abdomen, pelvis, and central thorax with minimal toxicity, high rates of local control, and prolonged systemic-therapy–free survival translating into improved quality-of-life.

Original languageEnglish
Pages (from-to)379-389
Number of pages11
JournalInternational Journal of Radiation Oncology Biology Physics
Volume112
Issue number2
DOIs
StateAccepted/In press - 2021

Fingerprint

Dive into the research topics of 'Phase I Trial of Stereotactic MRI-Guided Online Adaptive Radiation Therapy (SMART) for the Treatment of Oligometastatic Ovarian Cancer'. Together they form a unique fingerprint.

Cite this