TY - JOUR
T1 - PET-determined myocardial perfusion and flow in coronary artery disease characterization
AU - Valenta, Ines
AU - Schindler, Thomas H.
N1 - Publisher Copyright:
© 2024
PY - 2024/6
Y1 - 2024/6
N2 - Positron emission tomography (PET) myocardial perfusion imaging in conjunction with tracer-kinetic modeling enables the concurrent assessment of myocardial perfusion and regional myocardial blood flow (MBF) of the left ventricle in absolute terms in milliliters per gram per minute (mL/g/min). The non-invasive quantification of MBF during pharmacologically induced hyperemia, at rest, and corresponding myocardial flow reserve (MFR) opens a new avenue for the identification and characterization of classical or endogen type of coronary microvascular dysfunction (CMD) as functional substrate for microvascular angina in patients with non-obstructive coronary artery disease (CAD) and/or no CAD at all. Further, PET-MBF quantification expands the scope of conventional myocardial perfusion imaging from the identification of advanced, and flow-limiting, epicardial CAD to early stages of atherosclerosis and/or CMD. Adding MBF assessment to myocardial perfusion may also reliably unravel diffuse ischemia owing to significant left main stenosis and/or multivessel CAD, commonly confirmed by peak stress transient ischemic cavity dilation of the left ventricle during maximal vasomotor stress compared to rest on gated PET images. Owing to high spatial and contrast resolution in conjunction with photon-attenuation free myocardial perfusion PET images, PET is preferentially used for CAD detection in advanced obesity and women with pronounced breast habitus. With increasing clinical use of cardiac PET perfusion and MBF assessment, individualized, and image-guided cardiovascular treatment decisions in CAD patients is likely to ensue, while its translation into improved cardiovascular outcome remains to be investigated.
AB - Positron emission tomography (PET) myocardial perfusion imaging in conjunction with tracer-kinetic modeling enables the concurrent assessment of myocardial perfusion and regional myocardial blood flow (MBF) of the left ventricle in absolute terms in milliliters per gram per minute (mL/g/min). The non-invasive quantification of MBF during pharmacologically induced hyperemia, at rest, and corresponding myocardial flow reserve (MFR) opens a new avenue for the identification and characterization of classical or endogen type of coronary microvascular dysfunction (CMD) as functional substrate for microvascular angina in patients with non-obstructive coronary artery disease (CAD) and/or no CAD at all. Further, PET-MBF quantification expands the scope of conventional myocardial perfusion imaging from the identification of advanced, and flow-limiting, epicardial CAD to early stages of atherosclerosis and/or CMD. Adding MBF assessment to myocardial perfusion may also reliably unravel diffuse ischemia owing to significant left main stenosis and/or multivessel CAD, commonly confirmed by peak stress transient ischemic cavity dilation of the left ventricle during maximal vasomotor stress compared to rest on gated PET images. Owing to high spatial and contrast resolution in conjunction with photon-attenuation free myocardial perfusion PET images, PET is preferentially used for CAD detection in advanced obesity and women with pronounced breast habitus. With increasing clinical use of cardiac PET perfusion and MBF assessment, individualized, and image-guided cardiovascular treatment decisions in CAD patients is likely to ensue, while its translation into improved cardiovascular outcome remains to be investigated.
KW - Coronary artery disease
KW - Coronary microvascular dysfunction
KW - Myocardial blood flow
KW - Myocardial flow reserve
KW - Positron emission tomography
KW - Prognosis
KW - Treatment
UR - http://www.scopus.com/inward/record.url?scp=85186101954&partnerID=8YFLogxK
U2 - 10.1016/j.jmir.2024.02.010
DO - 10.1016/j.jmir.2024.02.010
M3 - Article
C2 - 38403519
AN - SCOPUS:85186101954
SN - 1939-8654
VL - 55
SP - S44-S50
JO - Journal of Medical Imaging and Radiation Sciences
JF - Journal of Medical Imaging and Radiation Sciences
IS - 2
ER -