TY - JOUR
T1 - PET amyloid-beta imaging in preclinical Alzheimer's disease
AU - Vlassenko, Andrei G.
AU - Benzinger, Tammie L.S.
AU - Morris, John C.
PY - 2012/3
Y1 - 2012/3
N2 - Alzheimer's disease (AD) is the leading cause of dementia, accounting for 60-70% of all cases [Hebert et al., 2003, 1]. The need for effective therapies for AD is great. Current approaches, including cholinesterase inhibitors and N-methyl-d-aspartate (NMDA) receptor antagonists, are symptomatic treatments for AD but do not prevent disease progression. Many diagnostic and therapeutic approaches to AD are currently changing due to the knowledge that underlying pathology starts 10 to 20. years before clinical signs of dementia appear [Holtzman et al., 2011, 2]. New therapies which focus on prevention or delay of the onset or cognitive symptoms are needed. Recent advances in the identification of AD biomarkers now make it possible to detect AD pathology in the preclinical stage of the disease, in cognitively normal (CN) individuals; this biomarker data should be used in the selection of high-risk populations for clinical trials. In vivo visualization of AD neuropathology and biological, biochemical or physiological confirmation of the effects of treatment likely will substantially improve development of novel pharmaceuticals. Positron emission tomography (PET) is the leading neuroimaging tool to detect and provide quantitative measures of AD amyloid pathology in vivo at the early stages and follow its course longitudinally. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.
AB - Alzheimer's disease (AD) is the leading cause of dementia, accounting for 60-70% of all cases [Hebert et al., 2003, 1]. The need for effective therapies for AD is great. Current approaches, including cholinesterase inhibitors and N-methyl-d-aspartate (NMDA) receptor antagonists, are symptomatic treatments for AD but do not prevent disease progression. Many diagnostic and therapeutic approaches to AD are currently changing due to the knowledge that underlying pathology starts 10 to 20. years before clinical signs of dementia appear [Holtzman et al., 2011, 2]. New therapies which focus on prevention or delay of the onset or cognitive symptoms are needed. Recent advances in the identification of AD biomarkers now make it possible to detect AD pathology in the preclinical stage of the disease, in cognitively normal (CN) individuals; this biomarker data should be used in the selection of high-risk populations for clinical trials. In vivo visualization of AD neuropathology and biological, biochemical or physiological confirmation of the effects of treatment likely will substantially improve development of novel pharmaceuticals. Positron emission tomography (PET) is the leading neuroimaging tool to detect and provide quantitative measures of AD amyloid pathology in vivo at the early stages and follow its course longitudinally. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.
KW - Alzheimer disease
KW - Amyloid
KW - Neuroimaging
KW - PET
KW - PIB
UR - http://www.scopus.com/inward/record.url?scp=84856065568&partnerID=8YFLogxK
U2 - 10.1016/j.bbadis.2011.11.005
DO - 10.1016/j.bbadis.2011.11.005
M3 - Review article
C2 - 22108203
AN - SCOPUS:84856065568
SN - 0925-4439
VL - 1822
SP - 370
EP - 379
JO - Biochimica et Biophysica Acta - Molecular Basis of Disease
JF - Biochimica et Biophysica Acta - Molecular Basis of Disease
IS - 3
ER -