TY - JOUR
T1 - Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome
AU - Gasparrini, Andrew J.
AU - Wang, Bin
AU - Sun, Xiaoqing
AU - Kennedy, Elizabeth A.
AU - Hernandez-Leyva, Ariel
AU - Ndao, I. Malick
AU - Tarr, Phillip I.
AU - Warner, Barbara B.
AU - Dantas, Gautam
N1 - Funding Information:
This work is supported in part by awards to G.D. through the National Institute of General Medical Sciences of the National Institutes of Health (R01 GM099538), the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (R01 AI123394) and the US Centers for Disease Control and Prevention (200-2016-91955); to P.I.T. through the National Institutes of Health (5P30 DK052574 (Biobank, DDRCC)); to G.D., P.I.T. and B.B.W. through the Eunice Kennedy Shriver National Institute Of Child Health and Human Development of the National Institutes of Health (R01 HD092414); to P.I.T. and B.B.W. through the Children’s Discovery Institute at St Louis Children’s Hospital and Washington University School of Medicine; and to A.J.G. through a NIGMS training grant award number T32 GM007067 (J. Skeath, principal investigator) and from the NIDDK Pediatric Gastroenterology Research Training Program award number T32 DK077653 (P.I.T., principal investigator). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies. We thank members of the Dantas laboratory for helpful discussion of the manuscript, and staff from the Edison Family Center for Genome Sciences & Systems Biology, E. Martin, B. Koebbe and J. Hoisington-López for technical support and sequencing expertise.
Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Hospitalized preterm infants receive frequent and often prolonged exposures to antibiotics because they are vulnerable to infection. It is not known whether the short-term effects of antibiotics on the preterm infant gut microbiota and resistome persist after discharge from neonatal intensive care units. Here, we use complementary metagenomic, culture-based and machine learning techniques to study the gut microbiota and resistome of antibiotic-exposed preterm infants during and after hospitalization, and we compare these readouts to antibiotic-naive healthy infants sampled synchronously. We find a persistently enriched gastrointestinal antibiotic resistome, prolonged carriage of multidrug-resistant Enterobacteriaceae and distinct antibiotic-driven patterns of microbiota and resistome assembly in extremely preterm infants that received early-life antibiotics. The collateral damage of early-life antibiotic treatment and hospitalization in preterm infants is long lasting. We urge the development of strategies to reduce these consequences in highly vulnerable neonatal populations.
AB - Hospitalized preterm infants receive frequent and often prolonged exposures to antibiotics because they are vulnerable to infection. It is not known whether the short-term effects of antibiotics on the preterm infant gut microbiota and resistome persist after discharge from neonatal intensive care units. Here, we use complementary metagenomic, culture-based and machine learning techniques to study the gut microbiota and resistome of antibiotic-exposed preterm infants during and after hospitalization, and we compare these readouts to antibiotic-naive healthy infants sampled synchronously. We find a persistently enriched gastrointestinal antibiotic resistome, prolonged carriage of multidrug-resistant Enterobacteriaceae and distinct antibiotic-driven patterns of microbiota and resistome assembly in extremely preterm infants that received early-life antibiotics. The collateral damage of early-life antibiotic treatment and hospitalization in preterm infants is long lasting. We urge the development of strategies to reduce these consequences in highly vulnerable neonatal populations.
UR - http://www.scopus.com/inward/record.url?scp=85073624526&partnerID=8YFLogxK
U2 - 10.1038/s41564-019-0550-2
DO - 10.1038/s41564-019-0550-2
M3 - Article
C2 - 31501537
AN - SCOPUS:85073624526
SN - 2058-5276
VL - 4
SP - 2285
EP - 2297
JO - Nature Microbiology
JF - Nature Microbiology
IS - 12
ER -