Periostin loss-of-function protects mice from post-traumatic and age-related osteoarthritis

Mukundan Attur, Xin Duan, Lei Cai, Tianzhen Han, Weili Zhang, Eric D. Tycksen, Jonathan Samuels, Robert H. Brophy, Steven B. Abramson, Muhammad Farooq Rai

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


Background: Elevated levels of periostin (Postn) in the cartilage and bone are associated with osteoarthritis (OA). However, it remains unknown whether Postn loss-of-function can delay or prevent the development of OA. In this study, we sought to better understand the role of Postn in OA development and assessed the functional impact of Postn deficiency on post-traumatic and age-related OA in mice. Methods: The effects of Postn deficiency were studied in two murine experimental OA models using Postn−/− (n = 32) and littermate wild-type (wt) mice (n = 36). Post-traumatic OA was induced by destabilization of the medial meniscus (DMM) in 10-week-old mice (n = 20); age-related OA was analyzed in 24-month-old mice (n = 13). Cartilage degeneration was assessed histologically using the OARSI scoring system, and synovitis was evaluated by measuring the synovial lining cell layer and the cells density in the synovial stroma. Bone changes were measured by μCT analysis. Serum levels of Postn were determined by ELISA. Expression of Postn and collagenase-3 (MMP-13) was measured by immunostaining. RNA-seq was performed on chondrocytes isolated from 21-day old Postn−/− (n = 3) and wt mice (n = 3) to discover genes and pathways altered by Postn knockout. Results: Postn−/− mice exhibited significantly reduced cartilage degeneration and OARSI score relative to wt mice in post-traumatic OA after 8 weeks (maximum: 2.37 ± 0.74 vs. 4.00 ± 1.20, P = 0.011; summed: 9.31 ± 2.52 vs. 21.44 ± 6.01, P = 0.0002) and spontaneous OA (maximum: 1.93 ± 0.45 vs. 3.58 ± 1.16, P = 0.014; summed: 6.14 ± 1.57 vs. 11.50 ± 3.02, P = 0.003). Synovitis was significantly lower in Postn−/− mice than wt only in the DMM model (1.88 ± 1.01 vs. 3.17 ± 0.63; P = 0.039). Postn−/− mice also showed lower trabecular bone parameters such as BV/TV, vBMD, Tb.Th, and Tb.N and high Tb. Sp in both models. Postn−/− mice had negligible levels of serum Postn compared with wt. Immunofluorescent studies of cartilage indicated that Postn−/− mice expressed lower MMP-13 levels than wt mice. RNA-seq revealed that cell-cell-adhesion and cell-differentiation processes were enriched in Postn−/− mice, while those related to cell-cycle and DNA-repair were enriched in wt mice. Conclusions: Postn deficiency protects against DMM-induced post-traumatic and age-related spontaneous OA. RNA-seq findings warrant further investigations to better understand the mechanistic role of Postn and its potential as a therapeutic target in OA.

Original languageEnglish
Article number104
JournalArthritis Research and Therapy
Issue number1
StatePublished - Dec 2021


  • Aging
  • Knee osteoarthritis
  • MMP-13
  • Periostin
  • RNA-seq
  • Trauma


Dive into the research topics of 'Periostin loss-of-function protects mice from post-traumatic and age-related osteoarthritis'. Together they form a unique fingerprint.

Cite this