TY - JOUR
T1 - Peptidoglycan deacetylation controls type IV secretion and the intracellular survival of the bacterial pathogen Legionella pneumophila
AU - Boamah, David
AU - Gilmore, Michael C.
AU - Bourget, Sarah
AU - Ghosh, Anushka
AU - Hossain, Mohammad J.
AU - Vogel, Joseph P.
AU - Cava, Felipe
AU - O’Connor, Tamara J.
N1 - Publisher Copyright:
Copyright © 2023 the Author(s). Published by PNAS.
PY - 2023/6
Y1 - 2023/6
N2 - Peptidoglycan is a critical component of the bacteria cell envelope. Remodeling of the peptidoglycan is required for numerous essential cellular processes and has been linked to bacterial pathogenesis. Peptidoglycan deacetylases that remove the acetyl group of the N-acetylglucosamine (NAG) subunit protect bacterial pathogens from immune recognition and digestive enzymes secreted at the site of infection. However, the full extent of this modification on bacterial physiology and pathogenesis is not known. Here, we identify a polysaccharide deacetylase of the intracellular bacterial pathogen Legionella pneumophila and define a two-tiered role for this enzyme in Legionella pathogenesis. First, NAG deacetylation is important for the proper localization and function of the Type IVb secretion system, linking peptidoglycan editing to the modulation of host cellular processes through the action of secreted virulence factors. As a consequence, the Legionella vacuole mis-traffics along the endocytic pathway to the lysosome, preventing the formation of a replication permissive compartment. Second, within the lysosome, the inability to deacetylate the peptidoglycan renders the bacteria more sensitive to lysozyme-mediated degradation, resulting in increased bacterial death. Thus, the ability to deacetylate NAG is important for bacteria to persist within host cells and in turn, Legionella virulence. Collectively, these results expand the function of peptidoglycan deacetylases in bacteria, linking peptidoglycan editing, Type IV secretion, and the intracellular fate of a bacterial pathogen.
AB - Peptidoglycan is a critical component of the bacteria cell envelope. Remodeling of the peptidoglycan is required for numerous essential cellular processes and has been linked to bacterial pathogenesis. Peptidoglycan deacetylases that remove the acetyl group of the N-acetylglucosamine (NAG) subunit protect bacterial pathogens from immune recognition and digestive enzymes secreted at the site of infection. However, the full extent of this modification on bacterial physiology and pathogenesis is not known. Here, we identify a polysaccharide deacetylase of the intracellular bacterial pathogen Legionella pneumophila and define a two-tiered role for this enzyme in Legionella pathogenesis. First, NAG deacetylation is important for the proper localization and function of the Type IVb secretion system, linking peptidoglycan editing to the modulation of host cellular processes through the action of secreted virulence factors. As a consequence, the Legionella vacuole mis-traffics along the endocytic pathway to the lysosome, preventing the formation of a replication permissive compartment. Second, within the lysosome, the inability to deacetylate the peptidoglycan renders the bacteria more sensitive to lysozyme-mediated degradation, resulting in increased bacterial death. Thus, the ability to deacetylate NAG is important for bacteria to persist within host cells and in turn, Legionella virulence. Collectively, these results expand the function of peptidoglycan deacetylases in bacteria, linking peptidoglycan editing, Type IV secretion, and the intracellular fate of a bacterial pathogen.
KW - DotK
KW - Legionella
KW - peptidoglycan
KW - polysaccharide deacetylase
KW - type IV secretion system
UR - http://www.scopus.com/inward/record.url?scp=85160607728&partnerID=8YFLogxK
U2 - 10.1073/pnas.2119658120
DO - 10.1073/pnas.2119658120
M3 - Article
C2 - 37252954
AN - SCOPUS:85160607728
SN - 0027-8424
VL - 120
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 23
M1 - e2119658120
ER -