Pediatric lung transplantation: Dynamics of the microbiome and bronchiolitis obliterans in cystic fibrosis

Ahmed A. Metwally, Christian Ascoli, Benjamin Turturice, Asha Rani, Ravi Ranjan, Yang Chen, Cody Schott, Albert Faro, Thomas W. Ferkol, Patricia W. Finn, David L. Perkins

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


BACKGROUND: Compositional changes in the microbiome are associated with the development of bronchiolitis obliterans (BO) after lung transplantation (LTx) in adults with cystic fibrosis (CF). The association between the lower airway bacterial community and BO after LTx in children with CF remains largely unexplored and is possibly influenced by frequent antibiotic therapy. The objectives of this study were to examine the relationship between bacterial community dynamics and the development of BO and analyze antibiotic resistance trends in children after LTx for CF. METHODS: For 3 years from the time of transplant, 12 LTx recipients were followed longitudinally, with 5 subjects developing BO during the study period. A total of 82 longitudinal bronchoalveolar lavage samples were collected during standard of care bronchoscopies. Metagenomic shotgun sequencing was performed on the extracted microbial DNA from bronchoalveolar lavage specimens. Taxonomic profiling was constructed using WEVOTE pipeline. The longitudinal association between development of BO and temporal changes in bacterial diversity and abundance were evaluated with MetaLonDA. The analysis of antibiotic resistance genes was performed with the ARGs-OAP v2.0 pipeline. RESULTS: All recipients demonstrated a Proteobacteria-predominant lower airways community. Temporal reduction in bacterial diversity was significantly associated with the development of BO and associated with neutrophilia and antibiotic therapy. Conversely, an increasing abundance of the phylum Actinobacteria and the orders Neisseriales and Pseudonocardiales in the lower airways was significantly associated with resilience to BO. A more diverse bacterial community was related to a higher expression of multidrug resistance genes and increased proteobacterial abundance. CONCLUSIONS: Decreased diversity within bacterial communities may suggest a contribution to pediatric lung allograft rejection in CF.

Original languageEnglish
Pages (from-to)824-834
Number of pages11
JournalJournal of Heart and Lung Transplantation
Issue number8
StatePublished - Aug 2020


  • bronchiolitis obliterans
  • cystic fibrosis
  • longitudinal studies
  • lung transplantation
  • microbiome


Dive into the research topics of 'Pediatric lung transplantation: Dynamics of the microbiome and bronchiolitis obliterans in cystic fibrosis'. Together they form a unique fingerprint.

Cite this