Patterns of transcriptional parallelism and variation in the developing olfactory system of Drosophila species

Jia Wern Pan, Qingyun Li, Scott Barish, Sumie Okuwa, Songhui Zhao, Charles Soeder, Matthew Kanke, Corbin D. Jones, Pelin Cayirlioglu Volkan

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Organisms have evolved strikingly parallel phenotypes in response to similar selection pressures suggesting that there may be shared constraints limiting the possible evolutionary trajectories. For example, the behavioral adaptation of specialist Drosophila species to specific host plants can exhibit parallel changes in their adult olfactory neuroanatomy. We investigated the genetic basis of these parallel changes by comparing gene expression during the development of the olfactory system of two specialist Drosophila species to that of four other generalist species. Our results suggest that the parallelism observed in the adult olfactory neuroanatomy of ecological specialists extends more broadly to their developmental antennal expression profiles, and to the transcription factor combinations specifying olfactory receptor neuron (ORN) fates. Additionally, comparing general patterns of variation for the antennal transcriptional profiles in the adult and developing olfactory system of the six species suggest the possibility that specific, non-random components of the developmental programs underlying the Drosophila olfactory system harbor a disproportionate amount of interspecies variation. Further examination of these developmental components may be able to inform a deeper understanding of how traits evolve.

Original languageEnglish
Article number8804
JournalScientific reports
Issue number1
StatePublished - Dec 1 2017


Dive into the research topics of 'Patterns of transcriptional parallelism and variation in the developing olfactory system of Drosophila species'. Together they form a unique fingerprint.

Cite this