Particles move along actin filament bundles in nerve growth cones

L. L. Evans, P. C. Bridgman

Research output: Contribution to journalArticle

42 Scopus citations

Abstract

Organelle movement along actin filaments has been demonstrated in dissociated squid axoplasm [Kurznetsov, S. A., Langford, G. M. and Weiss, D. G. (1992) Nature (London) 356, 722-725 and Bearer, E. L., DeGiorgis, J. A., Bodner, R.A., Kao, A.W. and Reese, T.S. (1993) Proc. Natl. Acad. Sci. USA 90, 11252-11256] but has not been shown to occur in intact neurons. Here we demonstrate that intracellular transport occurs along actin filament bundles in intact neuronal growth cones. We used video-enhanced differential interference contrast microscopy to observe intracellular transport in superior cervical ganglion neurons cultured under conditions that enhance the visibility of actin bundles within growth cone lamellipodia. Intracellular particles, ranging in size from <0.5-1.5 μm, moved along linear structures (termed transport bundles) at an average maximum rate of 0.48 μm/sec. After particle movement had been viewed, cultures were preserved by rapid perfusion with chemical fixative. To determine whether particle transport occurred along actin, we then used fluorescence microscopy to correlate this movement with actin and microtubule distributions in the same growth cones. The observed transport bundles colocalized with actin but not with microtubules. The rates of particle movement and the association of moving particles with actin filament bundles suggest that myosins may participate in the transport of organelles (or other materials) in intact neurons.

Original languageEnglish
Pages (from-to)10954-10958
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume92
Issue number24
DOIs
StatePublished - Nov 21 1995

Fingerprint Dive into the research topics of 'Particles move along actin filament bundles in nerve growth cones'. Together they form a unique fingerprint.

  • Cite this