Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis

Sandra Schoors, Katrien De Bock, Anna Rita Cantelmo, Maria Georgiadou, Bart Ghesquière, Sandra Cauwenberghs, Anna Kuchnio, Brian W. Wong, Annelies Quaegebeur, Jermaine Goveia, Francesco Bifari, Xingwu Wang, Raquel Blanco, Bieke Tembuyser, Ivo Cornelissen, Ann Bouché, Stefan Vinckier, Santiago Diaz-Moralli, Holger Gerhardt, Sucheta TelangMarta Cascante, Jason Chesney, Mieke Dewerchin, Peter Carmeliet

Research output: Contribution to journalArticlepeer-review

433 Scopus citations

Abstract

Strategies targeting pathological angiogenesis have focused primarily on blocking vascular endothelial growth factor (VEGF), but resistance and insufficient efficacy limit their success, mandating alternative antiangiogenic strategies. We recently provided genetic evidence that the glycolytic activator phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) promotes vessel formation but did not explore the antiangiogenic therapeutic potential of PFKFB3 blockade. Here, we show that blockade of PFKFB3 by the small molecule 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) reduced vessel sprouting in endothelial cell (EC) spheroids, zebrafish embryos, and the postnatal mouse retina by inhibiting EC proliferation and migration. 3PO also suppressed vascular hyperbranching induced by inhibition of Notch or VEGF receptor 1 (VEGFR1) and amplified the antiangiogenic effect of VEGF blockade. Although 3PO reduced glycolysis only partially and transiently in vivo, this sufficed to decrease pathological neovascularization in ocular and inflammatory models. These insights may offer therapeutic antiangiogenic opportunities.

Original languageEnglish
Pages (from-to)37-48
Number of pages12
JournalCell metabolism
Volume19
Issue number1
DOIs
StatePublished - Jan 7 2014

Fingerprint

Dive into the research topics of 'Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis'. Together they form a unique fingerprint.

Cite this