Parent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization bias

Delphine Carouge, Valerie Blanc, Sue E. Knoblaugh, Robert J. Hunter, Nicholas O. Davidson, Joseph H. Nadeau

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Testicular tumors, the most common cancer in young men, arise from abnormalities in germ cells during fetal development. Unconventional inheritance for testicular germ cell tumor (TGCT) risk both in humans and mice implicates epigenetic mechanisms. Apolipoprotein B mRNA-editing enzyme complex 1 (APOBEC1) cytidine deaminase and Deadend-1, which are involved in C-to-U RNA editing and microRNA-dependent mRNA silencing, respectively, are potent epigenetic modifiers of TGCT susceptibility in the genetically predisposed 129/Sv inbred mouse strain. Here, we show that partial loss of either APOBEC1 complementation factor (A1CF), the RNA-binding cofactor of APOBEC1 in RNA editing, or Argonaute 2 (AGO2), a key factor in the biogenesis of certain noncoding RNAs, modulates risk for TGCTs and testicular abnormalities in both parent-of-origin and conventional genetic manners. In addition, non-Mendelian inheritance was found among progeny of A1cf and Ago2 mutant intercrosses but not in backcrosses and without fetal loss. Together these findings suggest nonrandom union of gametes rather than meiotic drive or preferential lethality. Finally, this survey also suggested that A1CF contributes to long-term reproductive performance. These results directly implicate the RNA-binding proteins A1CF and AGO2 in the epigenetic control of germ-cell fate, urogenital development, and gamete functions.

Original languageEnglish
Pages (from-to)E5425-E5433
JournalProceedings of the National Academy of Sciences of the United States of America
Volume113
Issue number37
DOIs
StatePublished - Sep 13 2016

Keywords

  • A1CF
  • AGO2
  • Epigenetic inheritance
  • Parent-of-origin effects
  • Testicular cancer

Fingerprint

Dive into the research topics of 'Parent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization bias'. Together they form a unique fingerprint.

Cite this