TY - JOUR
T1 - Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets
AU - Xu, Xiao
AU - Zhang, Yuanhao
AU - Williams, Jennie
AU - Antoniou, Eric
AU - McCombie, W. R.
AU - Wu, Song
AU - Zhu, Wei
AU - Davidson, Nicholas O.
AU - Denoya, Paula
AU - Li, Ellen
N1 - Funding Information:
Publication of this article is funded by the Stony Brook Institute for Clinical and Translational Sciences Fusion Award (P.D.), the Simons Foundation (E.L.), and NIH grants R01CA140487 (J.W.), NIH RO1DK-56260 (N.D.), RO1HL-38180 (N.D.) and P30DK-52574 (N.D.). RNA-Sequencing was performed at the Cold Spring Harbor Laboratory Genome Sequencing Core, which is partially supported by NCI center grant CA045508. This article has been published as part of BMC Bioinformatics Volume 14 Supplement 9, 2013: Selected articles from the 8th International Symposium on Bioinformatics Research and Applications (ISBRA’12). The full contents of the supplement are available online at http://www.biomedcentral.com/ bmcbioinformatics/supplements/14/S9.
PY - 2013/6/28
Y1 - 2013/6/28
N2 - Background: High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results between the two platforms. The objective of this study was to compare parallel paired-end RNA-Seq and microarray data generated on 5-azadeoxy-cytidine (5-Aza) treated HT-29 colon cancer cells with an additional simulation study.Methods: We first performed general correlation analysis comparing gene expression profiles on both platforms. An Errors-In-Variables (EIV) regression model was subsequently applied to assess proportional and fixed biases between the two technologies. Then several existing algorithms, designed for DEG identification in RNA-Seq and microarray data, were applied to compare the cross-platform overlaps with respect to DEG lists, which were further validated using qRT-PCR assays on selected genes. Functional analyses were subsequently conducted using Ingenuity Pathway Analysis (IPA).Results: Pearson and Spearman correlation coefficients between the RNA-Seq and microarray data each exceeded 0.80, with 66%~68% overlap of genes on both platforms. The EIV regression model indicated the existence of both fixed and proportional biases between the two platforms. The DESeq and baySeq algorithms (RNA-Seq) and the SAM and eBayes algorithms (microarray) achieved the highest cross-platform overlap rate in DEG results from both experimental and simulated datasets. DESeq method exhibited a better control on the false discovery rate than baySeq on the simulated dataset although it performed slightly inferior to baySeq in the sensitivity test. RNA-Seq and qRT-PCR, but not microarray data, confirmed the expected reversal of SPARC gene suppression after treating HT-29 cells with 5-Aza. Thirty-three IPA canonical pathways were identified by both microarray and RNA-Seq data, 152 pathways by RNA-Seq data only, and none by microarray data only.Conclusions: These results suggest that RNA-Seq has advantages over microarray in identification of DEGs with the most consistent results generated from DESeq and SAM methods. The EIV regression model reveals both fixed and proportional biases between RNA-Seq and microarray. This may explain in part the lower cross-platform overlap in DEG lists compared to those in detectable genes.
AB - Background: High throughput parallel sequencing, RNA-Seq, has recently emerged as an appealing alternative to microarray in identifying differentially expressed genes (DEG) between biological groups. However, there still exists considerable discrepancy on gene expression measurements and DEG results between the two platforms. The objective of this study was to compare parallel paired-end RNA-Seq and microarray data generated on 5-azadeoxy-cytidine (5-Aza) treated HT-29 colon cancer cells with an additional simulation study.Methods: We first performed general correlation analysis comparing gene expression profiles on both platforms. An Errors-In-Variables (EIV) regression model was subsequently applied to assess proportional and fixed biases between the two technologies. Then several existing algorithms, designed for DEG identification in RNA-Seq and microarray data, were applied to compare the cross-platform overlaps with respect to DEG lists, which were further validated using qRT-PCR assays on selected genes. Functional analyses were subsequently conducted using Ingenuity Pathway Analysis (IPA).Results: Pearson and Spearman correlation coefficients between the RNA-Seq and microarray data each exceeded 0.80, with 66%~68% overlap of genes on both platforms. The EIV regression model indicated the existence of both fixed and proportional biases between the two platforms. The DESeq and baySeq algorithms (RNA-Seq) and the SAM and eBayes algorithms (microarray) achieved the highest cross-platform overlap rate in DEG results from both experimental and simulated datasets. DESeq method exhibited a better control on the false discovery rate than baySeq on the simulated dataset although it performed slightly inferior to baySeq in the sensitivity test. RNA-Seq and qRT-PCR, but not microarray data, confirmed the expected reversal of SPARC gene suppression after treating HT-29 cells with 5-Aza. Thirty-three IPA canonical pathways were identified by both microarray and RNA-Seq data, 152 pathways by RNA-Seq data only, and none by microarray data only.Conclusions: These results suggest that RNA-Seq has advantages over microarray in identification of DEGs with the most consistent results generated from DESeq and SAM methods. The EIV regression model reveals both fixed and proportional biases between RNA-Seq and microarray. This may explain in part the lower cross-platform overlap in DEG lists compared to those in detectable genes.
UR - http://www.scopus.com/inward/record.url?scp=84887156607&partnerID=8YFLogxK
U2 - 10.1186/1471-2105-14-S9-S1
DO - 10.1186/1471-2105-14-S9-S1
M3 - Article
C2 - 23902433
AN - SCOPUS:84887156607
SN - 1471-2105
VL - 14
JO - BMC bioinformatics
JF - BMC bioinformatics
IS - SUPPL9
M1 - S1
ER -