TY - JOUR
T1 - Parabiosis and single-cell RNA sequencing reveal a limited contribution of monocytes to myofibroblasts in kidney fibrosis
AU - Kramann, Rafael
AU - Machado, Flavia
AU - Wu, Haojia
AU - Kusaba, Tetsuro
AU - Hoeft, Konrad
AU - Schneider, Rebekka K.
AU - Humphreys, Benjamin D.
PY - 2018/5/3
Y1 - 2018/5/3
N2 - Fibrosis is the common final pathway of virtually all chronic injury to the kidney. While it is well accepted that myofibroblasts are the scar-producing cells in the kidney, their cellular origin is still hotly debated. The relative contribution of proximal tubular epithelium and circulating cells, including mesenchymal stem cells, macrophages, and fibrocytes, to the myofibroblast pool remains highly controversial. Using inducible genetic fate tracing of proximal tubular epithelium, we confirm that the proximal tubule does not contribute to the myofibroblast pool. However, in parabiosis models in which one parabiont is genetically labeled and the other is unlabeled and undergoes kidney fibrosis, we demonstrate that a small fraction of genetically labeled renal myofibroblasts derive from the circulation. Single-cell RNA sequencing confirms this finding but indicates that these cells are circulating monocytes, express few extracellular matrix or other myofibroblast genes, and express many proinflammatory cytokines. We conclude that this small circulating myofibroblast progenitor population contributes to renal fibrosis by paracrine rather than direct mechanisms.
AB - Fibrosis is the common final pathway of virtually all chronic injury to the kidney. While it is well accepted that myofibroblasts are the scar-producing cells in the kidney, their cellular origin is still hotly debated. The relative contribution of proximal tubular epithelium and circulating cells, including mesenchymal stem cells, macrophages, and fibrocytes, to the myofibroblast pool remains highly controversial. Using inducible genetic fate tracing of proximal tubular epithelium, we confirm that the proximal tubule does not contribute to the myofibroblast pool. However, in parabiosis models in which one parabiont is genetically labeled and the other is unlabeled and undergoes kidney fibrosis, we demonstrate that a small fraction of genetically labeled renal myofibroblasts derive from the circulation. Single-cell RNA sequencing confirms this finding but indicates that these cells are circulating monocytes, express few extracellular matrix or other myofibroblast genes, and express many proinflammatory cytokines. We conclude that this small circulating myofibroblast progenitor population contributes to renal fibrosis by paracrine rather than direct mechanisms.
KW - Chronic kidney disease
KW - Fibrosis
KW - Nephrology
UR - http://www.scopus.com/inward/record.url?scp=85060192179&partnerID=8YFLogxK
U2 - 10.1172/jci.insight.99561
DO - 10.1172/jci.insight.99561
M3 - Article
C2 - 29720573
AN - SCOPUS:85060192179
SN - 2379-3708
VL - 3
JO - JCI insight
JF - JCI insight
IS - 9
ER -