TY - JOUR
T1 - Pangenome graph construction from genome alignments with Minigraph-Cactus
AU - Human Pangenome Reference Consortium
AU - Hickey, Glenn
AU - Monlong, Jean
AU - Ebler, Jana
AU - Novak, Adam M.
AU - Eizenga, Jordan M.
AU - Gao, Yan
AU - Abel, Haley J.
AU - Antonacci-Fulton, Lucinda L.
AU - Asri, Mobin
AU - Baid, Gunjan
AU - Baker, Carl A.
AU - Belyaeva, Anastasiya
AU - Billis, Konstantinos
AU - Bourque, Guillaume
AU - Buonaiuto, Silvia
AU - Carroll, Andrew
AU - Chaisson, Mark J.P.
AU - Chang, Pi Chuan
AU - Chang, Xian H.
AU - Cheng, Haoyu
AU - Chu, Justin
AU - Cody, Sarah
AU - Colonna, Vincenza
AU - Cook, Daniel E.
AU - Cook-Deegan, Robert M.
AU - Cornejo, Omar E.
AU - Diekhans, Mark
AU - Doerr, Daniel
AU - Ebert, Peter
AU - Ebler, Jana
AU - Eichler, Evan E.
AU - Fairley, Susan
AU - Fedrigo, Olivier
AU - Felsenfeld, Adam L.
AU - Feng, Xiaowen
AU - Fischer, Christian
AU - Flicek, Paul
AU - Formenti, Giulio
AU - Frankish, Adam
AU - Fulton, Robert S.
AU - Garg, Shilpa
AU - Garrison, Erik
AU - Garrison, Nanibaa’ A.
AU - Giron, Carlos Garcia
AU - Green, Richard E.
AU - Groza, Cristian
AU - Guarracino, Andrea
AU - Haggerty, Leanne
AU - Hall, Ira M.
AU - Harvey, William T.
AU - Haukness, Marina
AU - Haussler, David
AU - Heumos, Simon
AU - Hoekzema, Kendra
AU - Hourlier, Thibaut
AU - Howe, Kerstin
AU - Jain, Miten
AU - Jarvis, Erich D.
AU - Ji, Hanlee P.
AU - Kenny, Eimear E.
AU - Koenig, Barbara A.
AU - Kolesnikov, Alexey
AU - Korbel, Jan O.
AU - Kordosky, Jennifer
AU - Koren, Sergey
AU - Lee, Ho Joon
AU - Lewis, Alexandra P.
AU - Liao, Wen Wei
AU - Lu, Shuangjia
AU - Lu, Tsung Yu
AU - Lucas, Julian K.
AU - Magalhães, Hugo
AU - Marco-Sola, Santiago
AU - Marijon, Pierre
AU - Markello, Charles
AU - Marschall, Tobias
AU - Martin, Fergal J.
AU - McCartney, Ann
AU - McDaniel, Jennifer
AU - Miga, Karen H.
AU - Mitchell, Matthew W.
AU - Mountcastle, Jacquelyn
AU - Munson, Katherine M.
AU - Mwaniki, Moses Njagi
AU - Nattestad, Maria
AU - Nurk, Sergey
AU - Olsen, Hugh E.
AU - Olson, Nathan D.
AU - Pesout, Trevor
AU - Phillippy, Adam M.
AU - Popejoy, Alice B.
AU - Porubsky, David
AU - Prins, Pjotr
AU - Puiu, Daniela
AU - Rautiainen, Mikko
AU - Regier, Allison A.
AU - Rhie, Arang
AU - Sacco, Samuel
AU - Sanders, Ashley D.
AU - Schneider, Valerie A.
AU - Schultz, Baergen I.
AU - Shafin, Kishwar
AU - Sibbesen, Jonas A.
AU - Sirén, Jouni
AU - Smith, Michael W.
AU - Sofia, Heidi J.
AU - Tayoun, Ahmad N.Abou
AU - Thibaud-Nissen, Françoise
AU - Tomlinson, Chad
AU - Tricomi, Francesca Floriana
AU - Villani, Flavia
AU - Vollger, Mitchell R.
AU - Wagner, Justin
AU - Walenz, Brian
AU - Wang, Ting
AU - Wood, Jonathan M.D.
AU - Zimin, Aleksey V.
AU - Zook, Justin M.
AU - Marschall, Tobias
AU - Li, Heng
AU - Paten, Benedict
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Springer Nature America, Inc.
PY - 2023
Y1 - 2023
N2 - Pangenome references address biases of reference genomes by storing a representative set of diverse haplotypes and their alignment, usually as a graph. Alternate alleles determined by variant callers can be used to construct pangenome graphs, but advances in long-read sequencing are leading to widely available, high-quality phased assemblies. Constructing a pangenome graph directly from assemblies, as opposed to variant calls, leverages the graph’s ability to represent variation at different scales. Here we present the Minigraph-Cactus pangenome pipeline, which creates pangenomes directly from whole-genome alignments, and demonstrate its ability to scale to 90 human haplotypes from the Human Pangenome Reference Consortium. The method builds graphs containing all forms of genetic variation while allowing use of current mapping and genotyping tools. We measure the effect of the quality and completeness of reference genomes used for analysis within the pangenomes and show that using the CHM13 reference from the Telomere-to-Telomere Consortium improves the accuracy of our methods. We also demonstrate construction of a Drosophila melanogaster pangenome.
AB - Pangenome references address biases of reference genomes by storing a representative set of diverse haplotypes and their alignment, usually as a graph. Alternate alleles determined by variant callers can be used to construct pangenome graphs, but advances in long-read sequencing are leading to widely available, high-quality phased assemblies. Constructing a pangenome graph directly from assemblies, as opposed to variant calls, leverages the graph’s ability to represent variation at different scales. Here we present the Minigraph-Cactus pangenome pipeline, which creates pangenomes directly from whole-genome alignments, and demonstrate its ability to scale to 90 human haplotypes from the Human Pangenome Reference Consortium. The method builds graphs containing all forms of genetic variation while allowing use of current mapping and genotyping tools. We measure the effect of the quality and completeness of reference genomes used for analysis within the pangenomes and show that using the CHM13 reference from the Telomere-to-Telomere Consortium improves the accuracy of our methods. We also demonstrate construction of a Drosophila melanogaster pangenome.
UR - http://www.scopus.com/inward/record.url?scp=85159117116&partnerID=8YFLogxK
U2 - 10.1038/s41587-023-01793-w
DO - 10.1038/s41587-023-01793-w
M3 - Article
C2 - 37165083
AN - SCOPUS:85159117116
SN - 1087-0156
JO - Nature Biotechnology
JF - Nature Biotechnology
ER -