Abstract
Pain and itch coding mechanisms in polymodal sensory neurons remain elusive. MrgprD+ neurons represent a major polymodal population and mediate both mechanical pain and nonhistaminergic itch. Here, we show that chemogenetic activation of MrgprD+ neurons elicited both pain- and itch-related behavior in a dose-dependent manner, revealing an unanticipated compatibility between pain and itch in polymodal neurons. While VGlut2-dependent glutamate release is required for both pain and itch transmission from MrgprD+ neurons, the neuropeptide neuromedin B (NMB) is selectively required for itch signaling. Electrophysiological recordings further demonstrated that glutamate synergizes with NMB to excite NMB-sensitive postsynaptic neurons. Ablation of these spinal neurons selectively abolished itch signals from MrgprD+ neurons, without affecting pain signals, suggesting a dedicated itch-processing central circuit. These findings reveal distinct neurotransmitters and neural circuit requirements for pain and itch signaling from MrgprD+ polymodal sensory neurons, providing new insights on coding and processing of pain and itch.
Original language | English |
---|---|
Article number | 113316 |
Journal | Cell Reports |
Volume | 42 |
Issue number | 11 |
DOIs | |
State | Published - Nov 28 2023 |
Keywords
- CP: Neuroscience
- MrgprD
- glutamate
- itch
- neural coding
- neuromedin B
- neurotransmitters
- pain
- polymodal sensory neurons