The potentially carcinogenic effect of therapeutic irradiation has been recognized for many years. Second malignancies, usually sarcomas, are known to arise within or at the edge of radiation fields after a period of several years after the initial radiation exposure. We analyzed tumor cells derived from seven radiation-induced tumors for abnormalities in tumor suppressor genes p53 and retinoblastoma at the DNA sequence and/or protein level. p53 mutations were detected by exon-specific polymerase chain reaction amplification and single-strand conformation poly morphism analysis of exons 5-8 followed by direct genomic sequencing of those tumors exhibiting a variant pattern. The p53 gene was abnormal in three of six sarcomas studied. Retinoblastoma gene analysis was performed by Western immunoblot; retinoblastoma protein was underphosphorylated in three of seven tumors and absent in one other. In all, six of seven radiation-induced human tumors have abnormalities of one or both suppressor genes. Inactivation of tumor suppressor genes by ionizing radiation may contribute to radiation carcinogenesis.

Original languageEnglish
Pages (from-to)6393-6396
Number of pages4
JournalCancer research
StatePublished - Dec 1991


Dive into the research topics of 'p53 Gene Mutations and Abnormal Retinoblastoma Protein in Radiation-induced Human Sarcomas'. Together they form a unique fingerprint.

Cite this