TY - JOUR
T1 - p120 nucleolar-proliferating antigen is a direct target of G-CSF signaling during myeloid differentiation
AU - Khanna-Gupta, Arati
AU - Sun, Hong
AU - Zibello, Theresa
AU - Lozovatsky, Larissa
AU - Ghosh, Prabhat K.
AU - Link, Daniel C.
AU - McLemore, Morgan L.
AU - Berliner, Nancy
PY - 2006/5
Y1 - 2006/5
N2 - Granulocyte-colony stimulating factor (G-CSF) is an essential cytokine, which contributes to proliferation and differentiation of granulocyte precursor cells in the bone marrow. Despite recent progress in understanding G-CSF signaling events, the mechanisms that underlie the distinct spectrum of biological functions attributed to G-CSF-mediated gene expression remain unclear. Previous studies have identified a number of genes, which are up-regulated in G-CSF-stimulated myeloid precursor cells. In this study, we sought to identify additional target genes of G-CSF-mediated proliferation and/or differentiation. cDNA representational difference analysis was used with the 32Dcl3 cell line as a model system to isolate genes, which are up-regulated in an immediate-early manner upon G-CSF stimualtion. We isolated p120 nucleolar-proliferation antigen (NOL1), a highly conserved, nucleolar-specific, RNA-binding protein of unknown function, and confirmed its expression by Northern blot analysis in 4-h, G-CSF-induced 32Dcl3 cells. Isolation of a mouse p120 genomic clone revealed the presence of a signal tranducer and activator of transcription (STAT)-binding site in the first intron of the gene. We demonstrate the importance of STAT3 and STAT5 in mediating the G-CSF response with respect to p120 expression by transient transfection analysis, oligonucleotide pull-down assays, and the loss of p120 expression in the bone marrow of mice lacking normal STAT3 signaling. In addition, overexpression of p120 in G-CSF-induced 32D cells revealed normal, morphologic maturation and growth characteristics but loss of lactoferrin expression, a marker of normal neutrophil maturation, suggesting that inappropriate expression of the p120 gene can result in aberrant neutrophil maturation.
AB - Granulocyte-colony stimulating factor (G-CSF) is an essential cytokine, which contributes to proliferation and differentiation of granulocyte precursor cells in the bone marrow. Despite recent progress in understanding G-CSF signaling events, the mechanisms that underlie the distinct spectrum of biological functions attributed to G-CSF-mediated gene expression remain unclear. Previous studies have identified a number of genes, which are up-regulated in G-CSF-stimulated myeloid precursor cells. In this study, we sought to identify additional target genes of G-CSF-mediated proliferation and/or differentiation. cDNA representational difference analysis was used with the 32Dcl3 cell line as a model system to isolate genes, which are up-regulated in an immediate-early manner upon G-CSF stimualtion. We isolated p120 nucleolar-proliferation antigen (NOL1), a highly conserved, nucleolar-specific, RNA-binding protein of unknown function, and confirmed its expression by Northern blot analysis in 4-h, G-CSF-induced 32Dcl3 cells. Isolation of a mouse p120 genomic clone revealed the presence of a signal tranducer and activator of transcription (STAT)-binding site in the first intron of the gene. We demonstrate the importance of STAT3 and STAT5 in mediating the G-CSF response with respect to p120 expression by transient transfection analysis, oligonucleotide pull-down assays, and the loss of p120 expression in the bone marrow of mice lacking normal STAT3 signaling. In addition, overexpression of p120 in G-CSF-induced 32D cells revealed normal, morphologic maturation and growth characteristics but loss of lactoferrin expression, a marker of normal neutrophil maturation, suggesting that inappropriate expression of the p120 gene can result in aberrant neutrophil maturation.
KW - Representation difference analysis (RDA)
KW - STAT3
KW - STAT5
UR - http://www.scopus.com/inward/record.url?scp=33745312189&partnerID=8YFLogxK
U2 - 10.1189/jlb.0205066
DO - 10.1189/jlb.0205066
M3 - Article
C2 - 16641140
AN - SCOPUS:33745312189
VL - 79
SP - 1011
EP - 1021
JO - Journal of Leukocyte Biology
JF - Journal of Leukocyte Biology
SN - 0741-5400
IS - 5
ER -