Abstract

Tropoelastin (TE), the soluble monomer of elastin, is synthesized by elastogenic cells, such as chondrocytes, fibroblasts, and smooth muscle cells (SMCs). The C-terminal domain of TE interacts with cell receptors, and these interactions play critical roles in elastic fiber assembly. We recently found that oxidation of TE prevents elastic fiber assembly. Here, we examined the effects of oxidation of TE on cell interactions. We found that SMCs bind to TE through heparan sulfate (HS), whereas fetal lung fibroblasts (WI-38 cells) bind through integrin αvβ3 and HS. In addition, we found that oxidation of TE by peroxynitrite (ONOO-) prevented binding of SMCs and WI-38 cells and other elastogenic cells, human dermal fibroblasts and fetal bovine chondrocytes. Because the C-terminal domain of TE has binding sites for both HS and integrin, we examined the effects of oxidation of a synthetic peptide derived from the C-terminal 25 amino acids of TE (CT-25) on cell binding. The CT-25 peptide contains the only two Cys residues in TE juxtaposed to a cluster of positively charged residues (RKRK) that are important for cell binding. ONOO- treatment of the CT-25 peptide prevented cell binding, whereas reduction of the CT-25 peptide had no effect. Mass spectrometric and circular dichroism spectroscopic analyses showed that ONOO- treatment modified both Cys residues in the CT-25 peptide to sulfonic acid derivatives, without altering the secondary structure. These data suggest that the mechanism by which ONOO- prevents cell binding to TE is by introducing negatively charged sulfonic acid residues near the positively charged cluster.

Original languageEnglish
Pages (from-to)13574-13582
Number of pages9
JournalJournal of Biological Chemistry
Volume286
Issue number15
DOIs
StatePublished - Apr 15 2011

Fingerprint

Dive into the research topics of 'Oxidative modifications of the C-terminal domain of tropoelastin prevent cell binding'. Together they form a unique fingerprint.

Cite this