TY - JOUR
T1 - Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway article
AU - Holze, Cathleen
AU - Michaudel, Chloé
AU - MacKowiak, Claire
AU - Haas, Darya A.
AU - Benda, Christian
AU - Hubel, Philipp
AU - Pennemann, Friederike L.
AU - Schnepf, Daniel
AU - Wettmarshausen, Jennifer
AU - Braun, Marianne
AU - Leung, Daisy W.
AU - Amarasinghe, Gaya K.
AU - Perocchi, Fabiana
AU - Staeheli, Peter
AU - Ryffel, Bernhard
AU - Pichlmair, Andreas
N1 - Funding Information:
We thank F. Weber (Veterinary University Giessen) for pI.18_3xFlag_NSs and pI.18_3xFlag_DMx_1xFlag; F. Meissner (Max-Planck Institute of Biochemistry, Munich) for Jurkat cells; R. Klein (Max-Planck Institute of Neurobiology, Munich) for SKN-BE2 cells; A. Bowie (Trinity College Dublin) for HEK293 cells; A. Musacchio (Max-Planck Institute of Cell Biology, Dresden) for HeLa FlpIn cells; G. Kochs (University of Freiburg) for antibody to FluAV NS1; A. Chaikuad and S. Knapp (University of Oxford) for amino-terminal His-tagged PGAM5 (pNIC28-Bsa4-PGAM5(Δ2–28); the innate immunity laboratory for critical discussions and suggestions; A. Mann for technical assistance; the MPI-B core facility for technical assistance with protein purification, analysis and imaging; M. Wilson and ECM Biosciences for raising the antibody to AIFM1 phosphorylated at Ser116; K. Mayr, I. Paron and G. Sowa for maintaining mass spectrometers; and S. Kaphengst and the MPI-B animal facility for breeding mice. Supported by the Max-Planck Free Floater program (A.P.), the German research foundation (PI 1084/2 and TRR179 to A.P. and SFB 1160, project 13) to P.S.), the European Research Council (starting grant ERC-StG iVIP, 311339 to A.P.), Infect-Era and the German Federal Ministry of Education and Research (ERASE) (A.P.), the US National Institutes of Health (R01 AI107056 and 1R41AI127009 (Moir) to D.W.L and G.K.A.), the Centre National de la Recherche Scientifique (B.R.) and the European Regional Development Fund (BIO-TARGET 2016-00110366 to Region Centre Val de Loire and la Région Centre (Respir_Ozone, 2014-00091905) (Valerie Quesniaux), to B.R.).
Publisher Copyright:
© 2017 The Author(s).
PY - 2018/2/1
Y1 - 2018/2/1
N2 - Reactive oxygen species (ROS) are generated by virus-infected cells; however, the physiological importance of ROS generated under these conditions is unclear. Here we found that the inflammation and cell death induced by exposure of mice or cells to sources of ROS were not altered in the absence of canonical ROS-sensing pathways or known cell-death pathways. ROS-induced cell-death signaling involved interactions among the cellular ROS sensor and antioxidant factor KEAP1, the phosphatase PGAM5 and the proapoptotic factor AIFM1. Pgam5 -/- mice showed exacerbated lung inflammation and proinflammatory cytokines in an ozone-exposure model. Similarly, challenge with influenza A virus led to increased infiltration of the virus, lymphocytic bronchiolitis and reduced survival of Pgam5 -/- mice. This pathway, which we have called 'oxeiptosis', was a ROS-sensitive, caspase independent, non-inflammatory cell-death pathway and was important for protection against inflammation induced by ROS or ROS-generating agents such as viral pathogens.
AB - Reactive oxygen species (ROS) are generated by virus-infected cells; however, the physiological importance of ROS generated under these conditions is unclear. Here we found that the inflammation and cell death induced by exposure of mice or cells to sources of ROS were not altered in the absence of canonical ROS-sensing pathways or known cell-death pathways. ROS-induced cell-death signaling involved interactions among the cellular ROS sensor and antioxidant factor KEAP1, the phosphatase PGAM5 and the proapoptotic factor AIFM1. Pgam5 -/- mice showed exacerbated lung inflammation and proinflammatory cytokines in an ozone-exposure model. Similarly, challenge with influenza A virus led to increased infiltration of the virus, lymphocytic bronchiolitis and reduced survival of Pgam5 -/- mice. This pathway, which we have called 'oxeiptosis', was a ROS-sensitive, caspase independent, non-inflammatory cell-death pathway and was important for protection against inflammation induced by ROS or ROS-generating agents such as viral pathogens.
UR - http://www.scopus.com/inward/record.url?scp=85038397780&partnerID=8YFLogxK
U2 - 10.1038/s41590-017-0013-y
DO - 10.1038/s41590-017-0013-y
M3 - Article
C2 - 29255269
AN - SCOPUS:85038397780
VL - 19
SP - 130
EP - 140
JO - Nature Immunology
JF - Nature Immunology
SN - 1529-2908
IS - 2
ER -