Ossicular motion related to middle ear transmission delay in gerbil

Ombeline De La Rochefoucauld, Puja Kachroo, Elizabeth S. Olson

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

The middle ear transmits sound efficiently from the air in the ear canal (EC) to the fluid filled cochlea. In gerbil, middle ear transmission produces a constant pressure gain between the EC and the cochlea of ~25 dB from 2 to 40 kHz, and a delay-like phase corresponding to a ~25-30 μs delay. The mechanisms by which the air-born signal is collected and delivered to the cochlea are not thoroughly understood, and the source of the delay is controversial. We investigated these issues by observing ossicular motion along a single line of sight, roughly parallel to the EC and perpendicular to the stapes footplate. Measurements were made at the umbo, the long process of the manubrium, across the malleus-incus joint, at the long process of the incus, and the stapes head. While the overall delay between EC pressure and stapes velocity was fairly constant with frequency, subcomponents of the delay were frequency dependent. Up to ~17 kHz, most of the overall delay was between the EC and umbo with a much smaller contribution along the ossicles, whereas in the range from ~17 to 30 kHz, more of the overall delay was along the ossicles.

Original languageEnglish
Pages (from-to)158-172
Number of pages15
JournalHearing research
Volume270
Issue number1-2
DOIs
StatePublished - 2010

Fingerprint

Dive into the research topics of 'Ossicular motion related to middle ear transmission delay in gerbil'. Together they form a unique fingerprint.

Cite this