Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency

Ying Dang, Gengxiang Jia, Jennie Choi, Hongming Ma, Edgar Anaya, Chunting Ye, Premlata Shankar, Haoquan Wu

Research output: Contribution to journalArticlepeer-review

187 Scopus citations

Abstract

Background: Single-guide RNA (sgRNA) is one of the two key components of the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 genome-editing system. The current commonly used sgRNA structure has a shortened duplex compared with the native bacterial CRISPR RNA (crRNA)-transactivating crRNA (tracrRNA) duplex and contains a continuous sequence of thymines, which is the pause signal for RNA polymerase III and thus could potentially reduce transcription efficiency. Results: Here, we systematically investigate the effect of these two elements on knockout efficiency and showed that modifying the sgRNA structure by extending the duplex length and mutating the fourth thymine of the continuous sequence of thymines to cytosine or guanine significantly, and sometimes dramatically, improves knockout efficiency in cells. In addition, the optimized sgRNA structure also significantly increases the efficiency of more challenging genome-editing procedures, such as gene deletion, which is important for inducing a loss of function in non-coding genes. Conclusions: By a systematic investigation of sgRNA structure we find that extending the duplex by approximately 5 bp combined with mutating the continuous sequence of thymines at position 4 to cytosine or guanine significantly increases gene knockout efficiency in CRISPR-Cas9-based genome editing experiments.

Original languageEnglish
Article number280
JournalGenome biology
Volume16
Issue number1
DOIs
StatePublished - Dec 15 2015

Fingerprint

Dive into the research topics of 'Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency'. Together they form a unique fingerprint.

Cite this