TY - JOUR
T1 - Optimizing nerve transfer surgery in tetraplegia
T2 - clinical decision making based on innervation patterns in spinal cord injury
AU - Dibble, Christopher F.
AU - Javeed, Saad
AU - Khalifeh, Jawad M.
AU - Midha, Rajiv
AU - Yang, Lynda J.S.
AU - Juknis, Neringa
AU - Ray, Wilson
N1 - Publisher Copyright:
©AANS 2022, except where prohibited by US copyright law
PY - 2022/3
Y1 - 2022/3
N2 - OBJECTIVE Nerve transfers are increasingly being utilized in the treatment of chronic tetraplegia, with increasing literature describing significant improvements in sensorimotor function up to years after injury. However, despite technical advances, clinical outcomes remain heterogenous. Preoperative electrodiagnostic testing is the most direct measure of nerve health and may provide prognostic information that can optimize preoperative patient selection. The objective of this study in patients with spinal cord injury (SCI) was to determine various zones of injury (ZOIs) via electrodiagnostic assessment (EDX) to predict motor outcomes after nerve transfers in tetraplegia. METHODS This retrospective review of prospectively collected data included all patients with tetraplegia from cervical SCI who underwent nerve transfer at the authors’ institution between 2013 and 2020. Preoperative demographic data, results of EDX, operative details, and postoperative motor outcomes were extracted. EDX was standardized into grades that describe donor and recipient nerves. Five zones of SCI were defined. Motor outcomes were then compared based on various zones of innervation. RESULTS Nineteen tetraplegic patients were identified who underwent 52 nerve transfers targeting hand function, and 75% of these nerve transfers were performed more than 1 year postinjury, with a median interval to surgery following SCI of 24 (range 8–142) months. Normal recipient compound muscle action potential and isolated upper motor neuron injury on electromyography (EMG) were associated with greater motor recovery. When nerve transfers were stratified based on donor EMG, greater motor gains were associated with normal than with abnormal donor EMG motor unit recruitment patterns. When nerve transfers were separated based on donor and recipient nerves, normal flexor donors were more crucial than normal extensor donors in powering their respective flexor recipients. CONCLUSIONS This study elucidates the relationship of the preoperative innervation zones in SCI patients to final motor outcomes. EDX studies can be used to tailor surgical therapies for nerve transfers in patients with tetraplegia. The authors propose an algorithm for optimizing nerve transfer strategies in tetraplegia, whereby understanding the ZOI and grade of the donor/recipient nerve is critical to predicting motor outcomes.
AB - OBJECTIVE Nerve transfers are increasingly being utilized in the treatment of chronic tetraplegia, with increasing literature describing significant improvements in sensorimotor function up to years after injury. However, despite technical advances, clinical outcomes remain heterogenous. Preoperative electrodiagnostic testing is the most direct measure of nerve health and may provide prognostic information that can optimize preoperative patient selection. The objective of this study in patients with spinal cord injury (SCI) was to determine various zones of injury (ZOIs) via electrodiagnostic assessment (EDX) to predict motor outcomes after nerve transfers in tetraplegia. METHODS This retrospective review of prospectively collected data included all patients with tetraplegia from cervical SCI who underwent nerve transfer at the authors’ institution between 2013 and 2020. Preoperative demographic data, results of EDX, operative details, and postoperative motor outcomes were extracted. EDX was standardized into grades that describe donor and recipient nerves. Five zones of SCI were defined. Motor outcomes were then compared based on various zones of innervation. RESULTS Nineteen tetraplegic patients were identified who underwent 52 nerve transfers targeting hand function, and 75% of these nerve transfers were performed more than 1 year postinjury, with a median interval to surgery following SCI of 24 (range 8–142) months. Normal recipient compound muscle action potential and isolated upper motor neuron injury on electromyography (EMG) were associated with greater motor recovery. When nerve transfers were stratified based on donor EMG, greater motor gains were associated with normal than with abnormal donor EMG motor unit recruitment patterns. When nerve transfers were separated based on donor and recipient nerves, normal flexor donors were more crucial than normal extensor donors in powering their respective flexor recipients. CONCLUSIONS This study elucidates the relationship of the preoperative innervation zones in SCI patients to final motor outcomes. EDX studies can be used to tailor surgical therapies for nerve transfers in patients with tetraplegia. The authors propose an algorithm for optimizing nerve transfer strategies in tetraplegia, whereby understanding the ZOI and grade of the donor/recipient nerve is critical to predicting motor outcomes.
KW - KEYWORDS nerve transfer
KW - electrodiagnostic testing
KW - hand function
KW - reanimation
KW - spinal cord injury
KW - tetraplegia
KW - upper extremity
UR - http://www.scopus.com/inward/record.url?scp=85128254416&partnerID=8YFLogxK
U2 - 10.3171/2021.6.SPINE21586
DO - 10.3171/2021.6.SPINE21586
M3 - Article
C2 - 34678778
AN - SCOPUS:85128254416
SN - 1547-5654
VL - 36
SP - 498
JO - Journal of Neurosurgery: Spine
JF - Journal of Neurosurgery: Spine
IS - 3
ER -