Optimal interpretation of FDG PET in the diagnosis, staging and management of pancreatic carcinoma

Dominique Delbeke, D. Michael Rose, William C. Chapman, C. Wright Pinson, J. Kelly Wright, R. Daniel Beauchamp, Yu Shyr, Steven D. Leach

Research output: Contribution to journalArticlepeer-review

212 Scopus citations


This study had two purposes to optimize the semiquantitative interpretation of 18F-fluorodeoxyglucose (FDG) PET scans in the diagnosis of pancreatic carcinoma by analyzing different cutoff levels for the standardized uptake value (SUV), with and without correction for serum glucose level (SUV(gluc)); and to evaluate the usefulness of FDG PET when used in addition to CT for the staging and management of patients with pancreatic cancer. Methods: Sixty-five patients who presented with suspected pancreatic carcinoma underwent whole-body FDG PET in addition to CT imaging. The PET images were analyzed visually and semiquantitatively using the SUV and SUV(gluc). The final diagnosis was obtained by pathologic (n = 56) or clinical and radiologic follow-up (n = 9). The performance of CT and PET at different cutoff levels of SUV was determined, and the impact of FDG PET in addition to CT on patient management was reviewed retrospectively. Results: Fifty-two patients had proven pancreatic carcinoma, whereas 13 had benign lesions, including chronic pancreatitis (n = 10), benign biliary stricture (n = 1), pancreatic complex cyst (n = 1) and no pancreatic pathology (n = 1). Areas under receiver operating characteristic curves were not significantly different for SUV and SUV(gluc). Using a cutoff level of 3.0 for the SUV, FDG PET had higher sensitivity and specificity than CT in correctly diagnosing pancreatic carcinoma (92% and 85% versus 65% and 61%). There were 2 false- positive PET (chronic pancreatitis, also false-positive with CT) and 4 false- negative PET (all with true-positive CT, abnormal but nondiagnostic) examinations. There were 5 false-positive CT (4 chronic pancreatitis and 1 pancreatic cyst) and 18 false-negative CT (all with true-positive FDG PET scans) examinations. FDG PET clarified indeterminate hepatic lesions or identified additional distant metastases (or both) in 7 patients compared with CT. Overall, FDG PET altered the management of 28 of 65 patients (43%). Conclusion: FDG PET is more accurate than CT in the detection of primary tumors and in the clarification and identification of hepatic and distant metastases. The optimal cutoff value of FDG uptake to differentiate benign from malignant pancreatic lesions was 2.0. Correction for serum glucose did not significantly improve the accuracy of FDG PET. Although FDG PET cannot replace CT in defining local tumor extension, the application of FDG PET in addition to CT alters the management in up to 43% of patients with suspected pancreatic cancer.

Original languageEnglish
Pages (from-to)1784-1791
Number of pages8
JournalJournal of Nuclear Medicine
Issue number11
StatePublished - Nov 1999


  • Fluorodeoxyglucose
  • Neoplasms
  • PET
  • Pancreas


Dive into the research topics of 'Optimal interpretation of FDG PET in the diagnosis, staging and management of pancreatic carcinoma'. Together they form a unique fingerprint.

Cite this