TY - JOUR
T1 - Optimal energy selection for proton stopping-power-ratio estimation using dual-energy CT-based monoenergetic imaging
AU - Je, Euikyu
AU - Lee, Hugh H.C.
AU - Duan, Xinhui
AU - Li, Bin
AU - Jia, Xun
AU - Yang, Ming
N1 - Publisher Copyright:
© 2019 Institute of Physics and Engineering in Medicine.
PY - 2019/10/4
Y1 - 2019/10/4
N2 - The dual-energy computed tomography (DECT)-based approach holds promise in reducing the overall uncertainty in proton stopping-power-ratio (SPR) estimation, but cannot be easily implemented with most commercial proton treatment planning systems (TPS). In this study, we revisited the idea of coupling the stoichiometric calibration method with virtual monoenergetic CT datasets (MonoCT) generated by modern DECT scanners, because of its readiness for implementation with the existing TPS. Our objective was to determine the optimal energy of the MonoCT dataset for stoichiometric calibration and estimate the overall uncertainty in SPR estimation at the optimal energy. We performed stoichiometric calibration for MonoCT datasets across the energy range available on a Siemens Force DECT scanner and a Philips IQon DECT scanner in a 10 keV step. We estimated the uncertainties of different sources (imaging, modeling, and inherent uncertainties) for different tissue types (lung, soft, and bone tissues) associated with each energy; these were then combined into a single composite uncertainty for three tumor sites (head-and-neck (HN), lung, and prostate). The optimal energy was eventually selected based on the composite range uncertainty, which turned out to be 160 keV for both DECT scanners. At 160 keV, the total uncertainties (2σ) in SPR estimation were determined to be 3.2%-4.5%, 0.9%, and 1.4%-1.6% for lung, soft, and bony tissues, respectively. These results were comparable to the corresponding values estimated for the DECT approach evaluated in our previous study: 3.8%, 1.2% and 2.0%, for lung, soft, and bony tissues, respectively. The composite range uncertainties (2σ) were estimated as 1.5%, 1.7%, and 1.5% for prostate, lung, and HN, respectively. Our results demonstrated the potential of MonoCT images for reducing proton SPR uncertainty. Further clinical studies are needed to compare this approach with the DECT approach directly on real patient cases.
AB - The dual-energy computed tomography (DECT)-based approach holds promise in reducing the overall uncertainty in proton stopping-power-ratio (SPR) estimation, but cannot be easily implemented with most commercial proton treatment planning systems (TPS). In this study, we revisited the idea of coupling the stoichiometric calibration method with virtual monoenergetic CT datasets (MonoCT) generated by modern DECT scanners, because of its readiness for implementation with the existing TPS. Our objective was to determine the optimal energy of the MonoCT dataset for stoichiometric calibration and estimate the overall uncertainty in SPR estimation at the optimal energy. We performed stoichiometric calibration for MonoCT datasets across the energy range available on a Siemens Force DECT scanner and a Philips IQon DECT scanner in a 10 keV step. We estimated the uncertainties of different sources (imaging, modeling, and inherent uncertainties) for different tissue types (lung, soft, and bone tissues) associated with each energy; these were then combined into a single composite uncertainty for three tumor sites (head-and-neck (HN), lung, and prostate). The optimal energy was eventually selected based on the composite range uncertainty, which turned out to be 160 keV for both DECT scanners. At 160 keV, the total uncertainties (2σ) in SPR estimation were determined to be 3.2%-4.5%, 0.9%, and 1.4%-1.6% for lung, soft, and bony tissues, respectively. These results were comparable to the corresponding values estimated for the DECT approach evaluated in our previous study: 3.8%, 1.2% and 2.0%, for lung, soft, and bony tissues, respectively. The composite range uncertainties (2σ) were estimated as 1.5%, 1.7%, and 1.5% for prostate, lung, and HN, respectively. Our results demonstrated the potential of MonoCT images for reducing proton SPR uncertainty. Further clinical studies are needed to compare this approach with the DECT approach directly on real patient cases.
KW - dual energy computed tomography
KW - human tissue composition
KW - proton stopping power ratio
KW - proton therapy
KW - stoichiometric calibration
KW - treatment planning
KW - virtual monoenergetic imaging
UR - http://www.scopus.com/inward/record.url?scp=85072945523&partnerID=8YFLogxK
U2 - 10.1088/1361-6560/ab3dec
DO - 10.1088/1361-6560/ab3dec
M3 - Article
C2 - 31437824
AN - SCOPUS:85072945523
SN - 0031-9155
VL - 64
JO - Physics in medicine and biology
JF - Physics in medicine and biology
IS - 19
M1 - 195015
ER -