TY - JOUR
T1 - Optimal design of minimum-power stimuli for phase models of neuron oscillators
AU - Dasanayake, Isuru
AU - Li, Jr Shin
PY - 2011/6/27
Y1 - 2011/6/27
N2 - In this paper, we study optimal control problems of spiking neurons whose dynamics are described by a phase model. We design minimum-power current stimuli (controls) that lead to targeted spiking times. In particular, we consider bounded control amplitude and characterize the range of possible spiking times determined by the bound, which can be chosen sufficiently small within the range where the phase model is valid. We show that for a given bound the corresponding feasible spiking times are optimally achieved by piecewise continuous controls. We present analytic expressions with numerical simulations of the minimum-power stimuli for several phase models. We demonstrate the applicability of our method with an experimentally determined phase response curve.
AB - In this paper, we study optimal control problems of spiking neurons whose dynamics are described by a phase model. We design minimum-power current stimuli (controls) that lead to targeted spiking times. In particular, we consider bounded control amplitude and characterize the range of possible spiking times determined by the bound, which can be chosen sufficiently small within the range where the phase model is valid. We show that for a given bound the corresponding feasible spiking times are optimally achieved by piecewise continuous controls. We present analytic expressions with numerical simulations of the minimum-power stimuli for several phase models. We demonstrate the applicability of our method with an experimentally determined phase response curve.
UR - http://www.scopus.com/inward/record.url?scp=79961071104&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.83.061916
DO - 10.1103/PhysRevE.83.061916
M3 - Article
AN - SCOPUS:79961071104
SN - 1539-3755
VL - 83
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 6
M1 - 061916
ER -