TY - JOUR
T1 - Obesity is a risk factor for acute promyelocytic leukemia
T2 - Evidence from population and cross-sectional studies and correlation with FLT3 mutations and polyunsaturated fatty acid metabolism
AU - Mazzarella, Luca
AU - Botteri, Edoardo
AU - Matthews, Anthony
AU - Gatti, Elena
AU - Di Salvatore, Davide
AU - Bagnardi, Vincenzo
AU - Breccia, Massimo
AU - Montesinos, Pau
AU - Bernal, Teresa
AU - Gil, Cristina
AU - Ley, Timothy J.
AU - Sanz, Miguel
AU - Bhaskaran, Krishnan
AU - Coco, Francesco Lo
AU - Pelicci, Pier Giuseppe
N1 - Publisher Copyright:
© 2020 Ferrata Storti Foundation
PY - 2020/6/1
Y1 - 2020/6/1
N2 - Obesity correlates with hematologic malignancies including leukemias, but risk of specific leukemia subtypes like acute promyelocytic leukemia and underlying molecular mechanisms are poorly understood. We explored multiple datasets for correlation between leukemia, body mass index (BMI) and molecular features. In a population-based study (n=5.2 million), we correlated BMI with promyelocytic leukemia, and other acute myeloid, lymphoid or other leukemias. In cross-sectional studies, we tested BMI deviation in promyelocytic leukemia trial cohorts from that expected based on national surveys. We explored The Cancer Genome Atlas for transcriptional signatures and mutations enriched in promyelocytic leukemia and/or obesity, and confirmed a correlation between body mass and FLT3 mutations in promyelocytic leukemia cohorts by logistic regression. In the population-based study, hazard ratio per 5 kg/m2 increase was: promyelocytic leukemia 1.44 (95%CI: 1.0-2.08), non-promyelocytic acute myeloid leukemias 1.17 (95%CI: 1.10-1.26), lymphoid leukemias 1.04 (95%CI: 1.0-1.09), other 1.10 (95%CI: 1.04-1.15). In cross-sectional studies, body mass deviated significantly from that expected (Italy: P<0.001; Spain: P=0.011; USA: P<0.001). Promyelocytic leukemia showed upregulation of polyunsaturated fatty acid metabolism genes. Odds of FLT3 mutations were higher in obese acute myeloid leukemias (odds ratio=2.4, P=0.007), whether promyelocytic or not, a correlation confirmed in the pooled promyelocytic leukemia cohorts (OR=1.22, 1.05-1.43 per 5 kg/m2). These results strengthen the evidence for obesity as a bona fide risk factor for myeloid leukemias, and in particular APL. FLT3 mutations and polyunsaturated fatty acid metabolism may play a previously under-appreciated role in obesity-associated leukemogenesis.
AB - Obesity correlates with hematologic malignancies including leukemias, but risk of specific leukemia subtypes like acute promyelocytic leukemia and underlying molecular mechanisms are poorly understood. We explored multiple datasets for correlation between leukemia, body mass index (BMI) and molecular features. In a population-based study (n=5.2 million), we correlated BMI with promyelocytic leukemia, and other acute myeloid, lymphoid or other leukemias. In cross-sectional studies, we tested BMI deviation in promyelocytic leukemia trial cohorts from that expected based on national surveys. We explored The Cancer Genome Atlas for transcriptional signatures and mutations enriched in promyelocytic leukemia and/or obesity, and confirmed a correlation between body mass and FLT3 mutations in promyelocytic leukemia cohorts by logistic regression. In the population-based study, hazard ratio per 5 kg/m2 increase was: promyelocytic leukemia 1.44 (95%CI: 1.0-2.08), non-promyelocytic acute myeloid leukemias 1.17 (95%CI: 1.10-1.26), lymphoid leukemias 1.04 (95%CI: 1.0-1.09), other 1.10 (95%CI: 1.04-1.15). In cross-sectional studies, body mass deviated significantly from that expected (Italy: P<0.001; Spain: P=0.011; USA: P<0.001). Promyelocytic leukemia showed upregulation of polyunsaturated fatty acid metabolism genes. Odds of FLT3 mutations were higher in obese acute myeloid leukemias (odds ratio=2.4, P=0.007), whether promyelocytic or not, a correlation confirmed in the pooled promyelocytic leukemia cohorts (OR=1.22, 1.05-1.43 per 5 kg/m2). These results strengthen the evidence for obesity as a bona fide risk factor for myeloid leukemias, and in particular APL. FLT3 mutations and polyunsaturated fatty acid metabolism may play a previously under-appreciated role in obesity-associated leukemogenesis.
UR - http://www.scopus.com/inward/record.url?scp=85085888447&partnerID=8YFLogxK
U2 - 10.3324/haematol.2019.223925
DO - 10.3324/haematol.2019.223925
M3 - Article
C2 - 31515354
AN - SCOPUS:85085888447
SN - 0390-6078
VL - 105
SP - 1559
EP - 1566
JO - Haematologica
JF - Haematologica
IS - 6
ER -