TY - GEN
T1 - Numerical Simulation of Flow past an Airfoil with Ice Accretion on Leading Edge
AU - Wang, Boyu
AU - Agarwal, Ramesh K.
N1 - Publisher Copyright:
© 2021, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2021
Y1 - 2021
N2 - The focus of this research is on aerodynamic simulation of flow past NACA 23012 airfoil with clean surface and with ice accretion on its leading edge by using the commercial CFD solver ANSYS Fluent. Reynolds-Averaged Navier-Stokes (RANS) computations are performed using Spalart-Allmaras (SA) and Wray-Agarwal (WA) turbulence models. ANSYS mesh package ICEM is used to model the geometry and generate the mesh. The computations are performed at 0, 2, 4, 6, 8, 10, and 12 degrees angle of attack which are compared with experimental data. For the case of ice accretion at the leading edge, the physical geometry becomes more complex; therefore, AutoCAD is used first for geometry modelling and then ANSYS ICEM is used to generate an unstructured mesh. Again, ANSYS Fluent is used to conduct simulations at 0, 2, 4, 6, 8, 10, and 12 degrees angle of attack, and SA and WA turbulence models are employed. All cases are run at chord Reynolds number of 1.8 million and a Mach number of 0.18. It is shown that the recently developed WA model can be used to obtain accurate results and should be considered as an alternative turbulence model for computing such complex flows.
AB - The focus of this research is on aerodynamic simulation of flow past NACA 23012 airfoil with clean surface and with ice accretion on its leading edge by using the commercial CFD solver ANSYS Fluent. Reynolds-Averaged Navier-Stokes (RANS) computations are performed using Spalart-Allmaras (SA) and Wray-Agarwal (WA) turbulence models. ANSYS mesh package ICEM is used to model the geometry and generate the mesh. The computations are performed at 0, 2, 4, 6, 8, 10, and 12 degrees angle of attack which are compared with experimental data. For the case of ice accretion at the leading edge, the physical geometry becomes more complex; therefore, AutoCAD is used first for geometry modelling and then ANSYS ICEM is used to generate an unstructured mesh. Again, ANSYS Fluent is used to conduct simulations at 0, 2, 4, 6, 8, 10, and 12 degrees angle of attack, and SA and WA turbulence models are employed. All cases are run at chord Reynolds number of 1.8 million and a Mach number of 0.18. It is shown that the recently developed WA model can be used to obtain accurate results and should be considered as an alternative turbulence model for computing such complex flows.
UR - http://www.scopus.com/inward/record.url?scp=85126755263&partnerID=8YFLogxK
U2 - 10.2514/6.2021-2583
DO - 10.2514/6.2021-2583
M3 - Conference contribution
AN - SCOPUS:85126755263
SN - 9781624106101
T3 - AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021
BT - AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021
Y2 - 2 August 2021 through 6 August 2021
ER -